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Kurzfassung 

Das aktuelle Wachstum im Gesundheitsmarkt führt zu einer hohen Anzahl von verfügbaren 

Sensoren zur Messung von Biosignalen. Diese Arbeit konzentriert sich auf eine Analyse der 

Datenqualität von Biosensoren zur Messung der Herzratenvariabilität (HRV), da mit dieser 

Methode die Prozesse des vegetativen Nervensystems erfasst werden können. In der Regel 

ist keine wissenschaftliche Validierung der PPG- und EKG-basierten Geräte vorhanden. Einige 

technische und strukturelle Anforderungen, wie eine ausreichend hohe Datenerfassungszeit 

(> fünf Minuten) und die richtige Abtastfrequenz (> 250 Hz), sind für eine qualitativ hochwertige 

Messung notwendig. Die HRV wird häufig in der Kardiologie, im Sport und für die Überwa-

chung des Lebensstils und der persönlichen Gesundheit ermittelt. In einer Online-Literatur-

recherche wurden verschiedene themenbezogene Publikationen gesammelt. Fast alle Wis-

senschaftler konzentrierten sich nur auf HRV-Kurzzeitmessungen in Ruhe und nicht während 

einer Trainingsphase. Das Internet wurde nach Wearables durchsucht und eine Liste von 21 

Sensoren, die eine HRV-Messung ermöglichen, erstellt. Ein Zugriff auf die Rohdaten der Sen-

soren ist bei den meisten Geräte unmöglich. Ziel der Probandenmessungen war es, sieben 

verschiedene Fitness-Tracker und ein medizinisches EKG-System (klinischer Standard) zu 

vergleichen. Insgesamt 17 Teilnehmer führten einen fünfminütigen Test in Ruhe und einen 

fünfminütigen Test auf einem Ergometer durch, während sie mit den Sensoren und dem klini-

schen Standard ausgestattet waren. Anschließend wurden die Daten verarbeitet und analy-

siert. Die HRV Parameter wurden mit der Kubios-HRV-Standard Software (Kubios Oy, Kuopio, 

Finnland) berechnet. Die Ergebnisse zeigen große Unterschiede in der Datenqualität zwischen 

EKG- und PPG-basierten Biosensoren. Alle berechneten Pearson-Korrelationskoeffizienten (> 

0,9171) zeigen eine sehr starke positive Beziehung zwischen dem klinischen Standard (Biopac 

MP35) und den einzelnen Biosensoren. Die EKG-basierten Sensoren lieferten hochwertige 

Daten (z.B. beträgt der absolute Fehler der mittleren RR-Intervalle 0,25 ms) während der 

Ruhe- und der Bewegungsmessung. Es wurden geringe Standardabweichungen (< 0,22 ms) 

und eine geringe Anzahl von Artefakten (< 0,9 %) ermittelt sowie eine einfache und robuste 

Bedienbarkeit gefunden. Schlussfolgend kann gesagt werden, dass EKG-basierte Sensoren 

für bestimmte medizinische Anwendungen eingesetzt werden könnten, wie z.B. für eine ge-

naue Messung der Herzrate (HR) oder der HRV. Die PPG-basierten Geräte lieferten geringe 

absolute Fehler für die mittlere HR (< 0,29 ms) und die mittlere RR (< 3,61 ms), aber hohe 

absolute Fehler (bis zu 26,01 ms) für alle anderen HRV-Parameter. Darüber hinaus waren die 

Standardabweichungen (< 7,38 ms) und die Anzahl der ausgefallenen R-Zacken (< 9,57 %) 

deutlich höher als jene von EKG-basierten Geräten. Aufgrund dieser Ergebnisse, der man-

gelnden Bedienerfreundlichkeit und regelmäßiger Probleme während der Probandenmessun-

gen sind diese für den medizinischen Gebrauch nicht zu empfehlen. Die private Verwendung 

von PPG-basierten Sensoren zur Herzfrequenzmessung kann jedoch empfohlen werden. 

Schlagwörter: Herzratenvariabilität, nicht-invasive Sensoren, Wearables, Elektrokardio-

graphie, Photoplethysmographie, Fitnesstracker, autonomes Nervensystem 
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Abstract 

The current growth in the healthcare market is leading to a high number of wearables available 

for measuring biosignals. This thesis focuses on an analysis of the data quality of biosensors 

for Heart Rate Variability (HRV) measurement, because with this method the processes of the 

autonomic nervous system can be detected. Usually there is a lack of scientific validation of 

the PPG (Photoplethysmography) -based and ECG (Electrocardiography) -based devices. In 

the home-care sector it would be a great improvement if vital signs like the heart rate (HR) or 

the HRV could be measured with common available wearables. Some technical and structural 

requirements, like a time of data collection high enough (> five minutes) and the right sampling 

frequency (> 250 Hz), are necessary for a high-quality measurement. The HRV is frequently 

determined in cardiology, in sports and as a tool for surveillance of the lifestyle and the per-

sonal health status. Different publications which are topic-related were gathered in an online 

literature research. All publications investigate the possibility of measuring the HRV with wear-

able fitness trackers. Nearly all scientists focused on HRV short-term testing during rest but 

not during an exercise phase. The internet was screened for wearables and a list of 21 sensors, 

designed for an HRV measurement was created. The access to the raw data of the sensors is 

impossible for most of the devices. The aim of the subject testing was to compare seven dif-

ferent fitness trackers and a medical ECG-system (clinical standard). Seventeen participants 

in total performed a five-minute test at rest and a five-minute test on an ergometer while the 

biosensors and the clinical standard were equipped. After this, the data were processed and 

analysed. The parameters of interest were calculated with the Kubios HRV Standard software 

(Kubios Oy, Kuopio, Finland). The results indicate big differences in data quality between ECG-

based and PPG-based biosensors. All calculated Pearson’s Correlation Coefficients (> 

0.9171) show a very strong positive relation between the clinical standard (Biopac MP35) and 

each biosensor. The ECG-based biosensors delivered high-quality data (e.g. the absolute er-

ror of the Mean RR-intervals is 0.25 ms) at rest and at exercise. They showed small standard 

deviations (< 0.22 ms) and a low number of artefacts (< 0.9 %). A simple and robust usability 

and a good peak detection were found. It can be concluded, that ECG-based sensors could 

be used for some medical applications, like an accurate measurement of the HR or the HRV. 

The PPG-based devices delivered low absolute errors for the Mean HR (< 0.29 ms) and the 

Mean RR (< 3.61 ms) but high absolute errors (up to 26.01 ms) for all other HRV parameters. 

Furthermore, the standard deviations (< 7.38 ms) and the number of failed R-peaks (< 9.57 %) 

were significantly higher than the parameters from ECG-based devices. Due to these results, 

a bad usability and regular problems during the subject tests they are not recommendable for 

medical use. However, a private use of PPG-based sensors for heart rate detection can be 

recommended. 

 

Keywords: heart rate variability, non-invasive sensors, wearables, Electrocardiography, 

Photoplethysmography, fitness trackers, autonomic nervous system 
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1 Introduction & background 

In the last decade there has been an exponential growth in the market for health-related 

wearables. The current fitness trend is leading to a high number of wearables available for 

measuring biosignals [1]. 28 percent of the population in Germany track or monitor their 

health via a mobile application, a fitness band or a smartwatch [2]. In particular, the watch-

like devices, which provide an average heart rate measurement, are accepted and popular 

in the public health sector [3] [4]. Furthermore, a wide range of gadgets for step counter 

measurement are available on the market. Most devices are positioned on the wrist or the 

chest of a person, but more and more manufacturers are developing sensor systems for use 

on the upper arm, finger and the ear lobe [1] [4].  

This thesis focuses on an analysis of the data quality of wearable biosensors. The main 

parameter of interest is the heart rate variability (HRV). The project behind this thesis was 

realised in cooperation with the company Autonom Health GmbH in Vienna. The subject 

testing was done in the lab of UAS Technikum Wien. The author declares that no conflict of 

interest exists.  

 

 

1.1 Scientific question & motivation 

 

“Can biosensors integrated in wearables measure the heart rate variability with an 

accuracy high enough for use in medical diagnostics?” 

 

Due to a constant improvement of sensor technology the measurement of the autonomic 

nervous system (ANS) is arousing interest in the field of medicine and sports [5]. Usually 

there is a lack of scientific validation of the devices available on the market [3] [6]. Most of 

the studies only validate the heart rate estimation. The developers of the products explicitly 

point out that it is not a medical device, so there is no time consuming and expensive vali-

dation necessary [7] [8]. Nearly all gadgets are based on the photoplethysmography (PPG) 

or electrocardiography (ECG) principle [1] [8]. In particular, for long-term surveillance and in 

the home-care sector it would be a great improvement if vital signs like the heart frequency 

or the HRV could be measured with common available wearables [9]. In the last ten years 

the scientific publications on wearable devices or fitness trackers has increased rapidly. Ni-

cole Chudy [10], for example, described, that under special conditions a measurement of the 

HRV is possible with the Microsoft Band 2. Plews et al. [11] compared a chest belt and a 

smartphone application with a medical electrocardiogram. In 2018, Hernando et al. [12] fo-

cused on the comparison of heart beat intervals derived from a H7 Polar chest belt and the 

Apple Watch. A good match and reliability of the results in a Relax and Mild Cognitive stress 

test without any movement of the arm was found. However, there were some missing heart 

beats (about 10%) in the Apple Watch detection. 
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1.2 Background of the HRV 

The physiological process of the human heartbeat is based on a conduction system. Special 

cardiac muscle cells provide an electrical activity in the tissue which leads to a contraction 

of the heart muscle. The system consists of five main components, the sinoatrial (SA) node, 

the atrioventricular (AV) node, the bundle of His, the bundle of branches and the Purkinje 

fibres [13]. The electrical potential travels through these components beginning with the an-

atomical pacemaker (SA node). This process leads to a rhythmic contraction of the heart 

and the electrical activity can be measured on the surface of the body with electrodes [14]. 

The HRV is a reaction of the physiological system to changing physiological processes in 

the human body. This dynamic regulates important vital functions like the heartbeat, the 

breathing, the physiological water balance, the metabolism and the blood pressure [15].  The 

inter-beat-intervals (in milliseconds) of the heart change permanently due to these develop-

ments. The parasympathetic (see chapter 1.3.2) and the sympathetic (see chapter 1.3.1) 

are the main inputs for variability [15]. The heart frequency increases during activity and 

decreases during rest or sleep. In general, it can be said that a high HRV is a sign for a good 

adaptability and a low one for a weak adaptability of the physiological body system [16]. With 

a mathematical algorithm, health correlating parameters, like the performance in sport, sleep 

quality, the reaction to physical and psychological stress or the recovery after exercises can 

be calculated [15] [17]. In Figure 1 three intervals are illustrated and show the changes in 

milliseconds. To detect always the same peak of the ECG-signal the RR intervals were taken 

to measure the time. The R-peak can be detected with an amplitude of about 1-20 mV and 

is therefore the easiest and the most efficient way to find the inter-beat-intervals of the heart 

[18]. Inter-beat-intervals are mostly named as RR intervals. 

 

 

Figure 1: illustration of the inter-beat-intervals of four consecutive R-peaks of a human ECG-signal. 

sec.=seconds; BPM=beats per minute [19]. 
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1.3 The autonomic nervous system 

The autonomic nervous system (ANS) controls the physiological processes of organs like 

the heart, the lungs, the urinary bladder, the blood vessels for oxygen supply of the organs 

or the digestive organs. Autonomic control is important to adjust the activities of the organs 

in a way that the best function for the human body is the result. The control of these organs 

is based on either reflexes or in the cortical control centres [20]. The most common definition 

of the ANS is to divide it into the sympathetic, the parasympathetic and the enteric divisions 

[21]. However, it is a misunderstanding that sympathetic and parasympathetic are the oppo-

site players in the nervous system. Both cooperate at the same time and adjust instantly like 

a loop control system at the most physiological processes. Only in the deep sleep there 

exists nearly no sympathetic activity [15]. The last division of the autonomic nervous system 

is called enteric division. The nerve fibres in the digestive organs like the intestine and the 

autonomic ganglia are the components of this part. The enteric division still works if there is 

no connection to the central nervous system. Reasons for this are complex reflex circuits 

and a high number of neurons [17] [20].  

 

1.3.1 The sympathetic nervous system 

The sympathetic nervous system (SNS) stimulates the whole ergotropic functions of the 

body structure. These nerves are associated with the so called “fight or flight” reaction [15]. 

It is a preparation to react in injury or stress situations, like danger. A postganglionic trans-

mitter for the sympathetic activity is noradrenaline, which leads to an increased blood pres-

sure [22]. Stress hormones like cortisol are produced to put all the energy together in dan-

gerous situations [23]. A permanent high cortisol level can have lasting effects on the health 

status. The effect of the sympathetic division on the human body is illustrated in Figure 2. It 

leads e.g. to a dilatation of the pupils and the bronchi, and to an inhabitation of the urinal 

system [14]. The heart accelerates to be prepared for body exercises. The HRV decreases 

during high sympathetic activity [17] [23]. The stomach, the pancreas and the intestines are 

inhibited to reduce the oxygen consumption in these organs. The saliva production is inhib-

ited. On the body’s surface the sympathetic supports the activity of the perspiratory glands, 

the sebaceous glands and the olfactory glands. The muscle tension in core, neck and the 

lower jaw increases to avoid injuries [15] [20].  

 

1.3.2 The parasympathetic nervous system 

The parasympathetic nervous system (PNS) is responsible for the control of processes 

which are highly active during rest. The human body digests during parasympathetic activity 

but rarely at a moment of high sympathetic activation [17] [14]. Acetylcholine (ACh) and nitric 

oxide (NO) are the primary transmitters of the post-ganglionic neurons in the nervous system 

[22]. PNS also uses peptides as a neurotransmitter. The effect of the parasympathetic nerv-

ous system can be seen in Figure 2. It leads to a pupillary constriction and a physiological 
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bronchoconstriction [24]. Furthermore, the saliva production and the urination is stimulated 

[22] [15]. The stomach, pancreas and intestines are stimulated for an improved digestion. 

Other features are an increased peristalsis and an activation of digestive enzymes. The va-

gus activity supports the production of glycogen [15] in the liver. The heart frequency slows 

down during rest. This modulation is regulated through a sinoatrial node response of the 

vagus nerve [17]. An increased vagal tone leads to a higher HRV in general [21]. The rhyth-

mical change of the heart rate during respiration (increases during inspiration, decreases 

during expiration) is called Respiratory Sinus Arrhythmia (RSA) and is an indication for par-

asympathetic activity [20] [15].  

 

 

 

Figure 2: The Illustration describes the effect of sympathetic (brown column) and parasympathetic 

(red column) activity on the different organs of the human body. The schematic display of the spinal 

cord shows the locations of the responsible nerves [24]. 
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1.4 HRV measurement 

Some technical and structural requirements are necessary for a high-quality measurement 

of the HRV. The time of data collection during a subject testing is as important as the sam-

pling frequency, the type of data processing and the filtering process. Furthermore, the 

method of ECG-measurement influences the result of the HRV parameters [9] [15]. A non-

invasive measurement of the variability is a standard for nearly all the available testing sys-

tems. Invasive methods deliver a higher accuracy of the electrical heart activity in some 

physiological areas, but they are not necessary for the HRV measurement and not adaptable 

in home care applications [15] [25]. The mechanical robustness is important, especially for 

long-term testing and during activity. Subjects with a high number of extrasystole beats 

(>1%) should be excluded due to a resulting high, but incorrect variability of the heart [9] 

[17]. Portable sensor systems with a wireless transfer standard (Bluetooth, ANT+) are sen-

sitive to nearby electromagnetic fields and other devices with a similar standard.   

 

1.4.1 Recording of the Electrocardiogram 

The calculation of the HRV is based on the recording of an electrocardiogram. The electrical 

activity of the heart can be detected with electrodes on the human body surface. The well-

known PQRST-complex is the result of such a measurement [14] [15]. Depending on the 

position of the electrodes the results are changing. There are different recording methods of 

the ECG common in the medical use: 

• Einthoven’s lead system 

• Goldberger’s lead system 

• Wilson’s lead system 

• Frank’s lead system 

• Nehb’s lead system 

The lead systems of Einthoven, Goldberger and Wilson are used in every hospital in diag-

nostic of different cardiological diseases, but they are not usable for HRV measurement dur-

ing exercise or long-term testing because of the electrode positions on the extremities [15] 

[17] [26]. Nehb´s bipolar lead system, which is measured on the chest, provides a stable 

signal during activity. Though the medical use of an 1-lead ECG is limited, it is a simple and 

efficient method for measuring the HRV [26]. 

 

1.4.2 Sampling frequency 

The sampling frequency is one of the main parameters for a high quality HRV measurement. 

According to the Shannon theorem the sampling rate must be at least two times the maxi-

mum existing frequency in the signal [27]. In light of this, no loss of information can be guar-

anteed [25] [9]. Figure 3 shows the difference between a sampling rate which is high enough 

and a sampling rate which is too low. The sampling frequency of the signal (yellow curve) in 

the upper illustration is high enough to avoid information loss. If using the same sampling 
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rate for a signal with a higher frequency, it is detected incorrectly. This so-called aliasing 

effect must be considered during biosignals-processing and can be seen in the lower illus-

tration of Figure 3.  

 

 

Figure 3: The blue vertical lines show the sampling rate of the system. The red circles mark the data 

points measured of the signal. The yellow curve in the upper illustration shows the signal detected 

with a sampling rate, which is high enough to avoid an aliasing effect. The blue curve in the lower 

illustration shows an aliasing effect due to a low sampling frequency. The signal detected (blue 

curve) does not match the real signal (yellow curve) [28]. 

 

The American Heart Association recommends a minimum sampling frequency of 500 Hz for 

resting ECG and 250 Hz for long-term ECG. Low values can lead to detecting the R-peaks 

imprecisely and to incorrect results in the HRV parameters calculated. Especially during ex-

ercise (increased heart rate) a sampling rate of e.g. 100 Hz leads to a loss of information 

because of decreasing variability [15] [17]. On the other hand, a detection with extremely 

high rates (4000 Hz) is not recommendable because of the big amount of data storage 

needed. Furthermore, common-mode interference due to outer conditions increases with 

higher frequency [25]. Modern ECG systems provide a sampling rate of about 1000 Hz, 

which is the recommended frequency for peak detection [29], [9], [15]. 
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1.4.3 Electrodes 

A pair of electrodes is necessary to measure the electric potential difference between two 

locations. A differentiation into unipolar and bipolar leads is usually made. A unipolar lead 

has a single electrode on the tip and a bipolar lead is an electrode with two isolated and 

separated conductors [30]. Gel electrodes with a decentral connection of the cable are com-

mon for one-time use in cardiology. This reduces the risk of slipping if external forces 

stresses the disposable electrode [15]. Reusable electrodes should be moistened with water 

before attaching it. The position should be cleaned with diluted alcohol to reduce contact-

resistance between electrode and skin [9]. 

 

1.4.4 Artefact detection 

The data set of detected RR intervals are the basis for all the following calculations in time-

domain and frequency-domain. A data processing with filtering and artefact detection is nec-

essary [31]. With this, incorrect results of the HRV measurement can be excluded [15]. Fur-

thermore, the raw signal is shortened during data processing. This is called artefact limita-

tion. If the length of the raw signal stays equal due to interpolation, the method is called 

artefact replacement [25]. Wrong beats or not detected beats lead to a significant increase 

of the variability calculated. In Figure 4 an ECG-signal with movement artefacts can be seen. 

Many parameters of the frequency-domain are sensitive to outliners, though time-domain 

parameters are less sensitive [17].  

 

Scientists gave different definitions for the characteristics of outliners. Outliners are all val-

ues, which fell outside the 95% bound of the confidence interval, stated Ward Dobbs et al. 

[7]. A visual inspection of the raw data for artefact detection is recommended. Furthermore, 

absolute and relative filtering of the signals is necessary in many cases [25].  

 

 

Figure 4: ECG-signal with movement artefacts (red circle) after four consecutive beats. Modified il-

lustration from [32]. 
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1.5 Sensor principles 

Clinicians show increasing interest in using HRV as an indicator for cardiovascular diseases 

and in determining the activity of the autonomic nervous system [33]. It is common to use 

non-invasive sensors for detecting the heart beats. An accurate determination of the heart-

beat interval is required. Two different sensor principles are usually used for testing the HRV 

[34]. The most common method is the Electrocardiography (ECG). The second one is the 

Photoplethysmography (PPG). Both can provide raw data (inter-pulse-intervals) for use in 

further calculation of HRV parameters. There are differences in usability and data processing 

[35]. 

 

1.5.1 Electrocardiography 

The HRV measurement through ECG is described in chapter 1.4.1. This method shows high 

accuracy and is state of the art in many applications. The depolarization of the ventricular 

myocardium delivers a signal without any phase delay. The electric potential of the heart can 

be detected on different locations on the human body surface [14]. Physiological processes 

can generate noises in the signal like a respiration induced baseline drift, interferences of 

signals and a contamination through electromyographic activity [35] [34]. Non-physiological 

processes like a power line interference, body movement artefacts and a movement of elec-

trode contact are responsible for artefacts as well. Right now, mainly ECG-based measure-

ments are used in clinical environment.   

 

1.5.2 Photoplethysmography 

Photoplethysmography is an optical heart rate monitoring technology. The human blood vol-

ume changes in the peripheral microvasculature due to the rhythmical contractions of the 

heart. This effect is monitored to determine the timing of cardiac cycles [34]. An optical 

source (LED) emits light into the tissue. Modern systems use diodes which emit a near-

infrared light. The photosensor captures the refracted light. A mathematical algorithm calcu-

lates the biometric data. This method can be used in the reflection mode and the transmis-

sion mode [33]. At the reflection mode, the light source and the detector are placed close to 

each other on the human skin. The light refracted in the microvascular arteries is detected 

in the sensor. Wrist-worn wearables are based on this sensor principle. At the transmission 

mode, the light source (mostly green LED) and the detector are placed on the opposite side 

of the tissue under review. The light transmitted is compared with the light emitted of the 

diode [34] [33]. Wearables which are placed on the fingertip or on the ear lobe are based on 

the transmission mode.  

 

There are some difficulties in using photoplethysmography in medical application. Darker 

skin tone or inked skin can affect the result of the measurement, because of the change in 

green light absorption. The so called “optical-noise” influences the reading of the heartbeat. 
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This effect changes depending on the sensor location. PPG recordings are highly vulnerable 

to motion artefacts and show a low accuracy during exercise [7], [33], [34]. The oscillations 

in the blood volume show a phase delay of PPG derived heart frequency compared to an 

ECG derived heart frequency. This delay can be seen in Figure 5. The specific vessel elas-

ticity of each human individual changes this delay [34]. Low surface temperature and low 

blood flow can falsify the result of the measurement. However, there are many benefits in 

using photoplethysmography. Parameters like the rate of ventilation and the blood oxygen-

ation can be derived with a simple PPG recording. Patients can record their health parame-

ters at home and transfer it to clinicians. PPG recording prove high convenient for home-

care treatment and in clinical institutions, claimed a researcher [34]. 

 

 

Figure 5: The illustration shows a comparison of an ECG-derived signal (black line) and a PPG-de-

rived signal (purple line) of five consecutive heart beats. The red dots mark the peak of the signal 

detected [36]. 

 

 

1.6 HRV parameters investigated 

It is possible to determine many different parameters with an HRV analysing tool. They are 

divided into Time-Domain, Frequency-Domain and Nonlinear parameters. In this section the 

parameters of interest for this study are listed and described (Time-Domain and Nonlinear 

parameters). All of the HRV parameters are standardized and the corresponding mathemat-

ical algorithms can be find in the subject-specific literature [25], [29], [37]. The results calcu-

lated can be seen in chapter 3.  
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1.6.1 Mean RR & Mean HR 

The Mean RR is the average of all R-peak to R-peak intervals. It is measured in milliseconds 

(ms). The parameter is calculated from the raw RR series. The Mean RR is higher at rest 

than at exercise. The Mean HR is the average heart rate over the entire measurement. It is 

measured in beats per minute. The basis for the calculation is the raw RR series [25].  

 

1.6.2 SDNN & RMSSD 

The SDNN is the standard deviation of the N-peak to N-peak intervals. This square root of 

the variance is measured in milliseconds. It reflects the global variability of the series and 

indicates the cyclic components [38]. The SDNN is influenced by SNS and PNS and it is 

higher at rest than at exercise [17]. The RMSSD is the root mean square of successive 

differences between N-peak to N-peak intervals and it is measured in milliseconds. It is an 

important HRV parameter, also in short-term measurement. The RMSSD is used to estimate 

the parasympathetic activity and the regeneration. Long-term measured RMSSD show a 

strong correlation to pNN50 [37] [39]. 

 

1.6.3 pNN50 

The pNN50 is the percentage of adjacent N-peak to N-peak intervals with a difference of 

more than 50 milliseconds to each other. It shows a strong correlation to RMSSD in long-

term measurement [37]. This parameter is used to estimate the activity of the PNS. For an 

evaluation of the RSA the RMSSD should be preferred [25] [37].  

 

1.6.4 SD1 & SD2 

A Poincare plot can be analysed by fitting an ellipse to all data points. The SD1 is the stand-

ard deviation of the distance (each point) from the y=x axis. It shows a correlation with bar-

oreflex sensitivity [37]. The SD2 is the standard deviation of the distance (each point) from 

the y=x axis plus the average R-R interval. Both nonlinear parameters are measured in mil-

liseconds [37], [25], [38].  

 

 

1.7 Medical application of the HRV 

K.F. Wenckebach and H. Winterberg described the RSA as an indication for a healthy and 

physiological function of the heart in 1927 [17]. The heart rate diagnostic with respect to the 

variability was used first about 50 years ago. Scientists found out, that the analysis of the 

heart rate variability can provide information about the well-being of an unborn child. This 

method is called Cardiotocography (CTG). Later, HRV has become a popular method for 

health education, prevention and for diagnostic of chronical diseases [17]. Many scientific 

paper confirmed the possible application of the HRV measurement for general mortality 
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prediction and for cardiac risk stratification [15]. The use of HRV analysis in sports started in 

the 90th of the last century [40]. As a latest trend people show an increased interest in HRV 

testing to monitor their health status and to improve sleep, nutrition, regeneration and stress 

resistance [15] [31]. 

 

The HRV is frequently determined in cardiology [41]. Modern ECG systems for home-care 

use are cheap and easy to apply. A myocardial infarction leads to an early decrease of the 

HRV. The recovery starts after few weeks [42]. There is a mortality increased for patients, 

who have a low magnitude of HRV in short-term and a standard deviation of all RR intervals 

(SDNN) reduced (24 h measurement) during 21 months after a myocardial infarction. Fur-

thermore, a low HRV may be an indicator for sudden cardiac death [41]. Clinicians found at, 

that HRV measurement has the potential to detect rejection episodes after heart transplan-

tation. Frequency domain’s parameters can give an information about possible cardiac rein-

nervation after a time interval of more than one year [42]. Additionally, it has been used in 

disease detection for Alzheimer, leukaemia, chronic migraines, stroke and renal failure [43]. 

Insomnia, sleep-related breathing disorders and epilepsy can be detected with an HRV re-

cording during sleep. An analysis shows the different stages of physiological sleep and the 

control of the autonomic nervous system. The sympathetic is predominate during rapid eye 

movement (REM) sleep and a high parasympathetic activity can be observed in other sleep 

stages [41]. A pain detection for people with awareness clouded in palliative care is possible 

[15]. The autonomic dysfunction is a key characteristic for multiple organ failure, myocardial 

infarction, brain trauma and sepsis [43]. Moreover, HRV parameters impaired could be a 

marker for depression. Reduced HRV is an indicator for diabetic autonomic neuropathy 

[42].The examination of a human HRV is an efficient tool to make the function of the auto-

nomic nervous system understandable [15]. Factors like gender, age or the individual health 

status should be considered for a high-quality analysis [43].  

 

An HRV analysis is a commonly used tool in sports [31]. Professional athletes use it to de-

termine the regeneration after a training and to plan the training session’s intensity. The 

results of many publications show time-domain and frequency-domain parameters reduced 

for a certain time after a high-intensity workout [44]. An HRV-guided training provides a 

workout adaptation (high or low intensity) based on the daily changes of the parameters [31]. 

Furthermore, it is an instrument for the identification of overtraining and anaerobic thresh-

olds. Fatigue and nutrition quality can be determined [31] [44].  

 

 

1.8 Topic related papers and scientific publications 

Different papers and publications which are topic-related were gathered in an online litera-

ture research. All publications investigate the possibility of measuring the HRV with wearable 

fitness trackers. A selection of relevant sources was made due to the high number of 



 

17 

sources. Currently no standard method for the validation of wearable biosensors is available. 

Therefore, the studies selected vary in study design and data analysis. 

Ward C. Dobbs et al. [7] created a matrix of different HRV tests which were generated with 

wearables. After this, they calculated the separate effect size (ES) and the confidence inter-

val for each testing. The degree of absolute error was modulated through the different use 

of HRV metric, the biological sex, the position of testing but not the type of portable device. 

No significant difference was found after outliner removal. The small errors compared to a 

medical ECG are acceptable when considering the benefits of wearable technology use for 

medical diagnostics, stated the scientists [7]. K. Georgiou et al. [8] implemented search cri-

teria to present investigations (16 biosensors based on ECG, two biosensors based on PPG) 

on the accuracy of HRV data recorded with wearables. Nearly all subject tests delivered 

excellent correlation between the wearable sensor and the clinical standard (stationary ECG 

device) during rest. The researchers found a progressive decline in correlation at exercise 

level increased. However, the agreements for RR intervals (derived at the chest) were still 

high. Studies with higher number of subjects, better data analysis and non-stationary condi-

tions will improve the validation methods in the future [8]. The comparison of data quality in 

HRV analysis derived from ECG and PPG were implemented in many scientific papers. Nev-

ertheless, the results and conclusions of this studies are often different. For example, G. Lu 

et al. [34] stated, that PPG provides accurate beat-to-beat intervals for calculating the com-

mon HRV parameters (time domain, frequency domain). They used a transmission mode 

ear-clip (PS-2105, Feedback Instruments Limited, Crowborough UK) for PPG signal record-

ing with a sampling frequency of 100 Hz and an ECG sensor (PS-2111, Feedback Instru-

ments Limited, Crowborough UK) with a sampling frequency of 200 Hz at a subject testing 

(42 participants). The scientists concluded, that a use of wearables based on the PPG prin-

ciple can be a practical alternative to stationary ECG for medical diagnostics [34]. V. Jeyhani 

et al. [45] compared the HRV data derived from a fingertip sensor (PPG sensor with 250 Hz) 

and from a stationary system (ECG sensor with 500 Hz). They showed, that the error size 

varies at the different HRV parameters calculated. The SDNN and the root mean-square of 

successive differences of adjacent RR intervals (RMSSD) revealed relative errors of 2.47% 

and 5.55%. The percentage of pairs of adjacent RR intervals differing by more than 50 mil-

liseconds (ms), called pNN50, was the parameter most affected with a relative error of 

29.89%. The researchers stated, that a calculation of the second derivative of the PPG data 

delivers no better results [45]. Nicole S. Chudy [10] validated the Microsoft Band 2 (Microsoft 

Corporation, Redmond USA) as a device for measuring the HRV on the wrist. 49 participants 

were asked to perform a cognitive task in seating position and without any movement of the 

arm. A Microsoft Band 2 can be used for a HRV testing during rest and could be an alterna-

tive to stationary ECG in the future, concluded the researcher [10]. A validation of the Apple 

Watch (Apple Inc., Cupertino USA) for HRV measurements conducted David Hernando et 

al. [12] in 2018. The subjects had to perform a five-minute relax and a mental stress test in 

seating position. The scientists used a Polar H7 (Polar Electro, Kempele Finland) chest strap 

as a reference for the RR interval series. Then, the calculated parameters (e.g. Standard 
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deviation, SDNN, RMSSD, pNN50) and the agreement and reliability coefficients were ana-

lysed. The data derived from the Apple Watch showed good agreement and reliability. How-

ever, about 10% of the RR intervals were missing [12]. Daniel J. Plews et al. [11] compared 

the HRV recorded data of the Polar H7, a smartphone application (“HRV4training”) and a 

Quark T12x ECG system (Cosmed, Rome Italy) in 2017. 29 participants performed a five-

minute test at rest with guided breathing and with normal breathing. The researchers deter-

mined only the RMSSD and the technical error of estimate (TEE) for the different biosensors. 

The agreement of the smartphone application and the chest strap is acceptable regarding 

the RMSSD and the TEE, stated the scientists. Furthermore, the simple HRV recording via 

app can be a method which is preferred in home-care and for athletes [11]. Michael R. Esco 

et al. [46] conducted a study concerning validation of a smartphone pulse sensor (ithlete 

HRV Fit Ltd, Southampton UK) application for determining the logarithmical transformed 

RMSSD in 2017. 30 subjects performed an ultra-short-term HRV recording (one minute) in 

seated, supine and standing position. The data analysis of the PPG based finger pulse sen-

sor showed a strong correlation and good agreement to the Biopac MP100 (Biopac Systems 

Inc, Goleta USA). Nevertheless, it must be considered, that a validation requires calculation 

of multiple HRV parameters and that the recording time was short. Furthermore, significant 

differences were found in the standing and seated position [46]. The Polar V800 smartwatch 

was validated by David Giles et al. [47] in 2015. They used a Polar H7 chest strap to record 

the biosignals. The raw RR data was exported from the Polar Flow web page. The Biopac 

MP36 allocated the reference data (both with a sampling frequency of 1000 Hz). Recordings 

were performed in the supine (ten minutes) and in the standing (seven minutes) position. 

The 20 participants were asked to match their breathing frequency to a metronome (0.2 Hz) 

during data acquisition. The data analysis (executed with the Kubios HRV software) deliv-

ered no significant differences in any parameters (e.g. SDNN, RMSSD, pNN50, VLF, LF, 

HF). The strong Inter-Class-Correlation (ICC) of >0.999 and the small ES (≤0.029) are indi-

cator for a very good agreement between the two data sets. The Polar V800 delivered higher 

data quality than previous Polar models, stated the researchers [47]. In 2014, the Spanish 

scientists Marco Romagnoli et al. [40] conducted a study to determine the data quality of a 

smart textile system for HRV recording. The smart shirt (GOW Weartech, Valencia Spain) 

has integrated electrodes on the chest to detect the electrical potential of the heart. The 

biosensor and the Cardiolab 2 plus ECG (Prucka Engineering, Texas USA) deliver data with 

a sampling rate of 250 Hz and of 1000 Hz. 12 subjects performed a 30 minutes cycling test 

on an ergometer. Data analysis was executed with the Kubios HRV software. The used 

Bland-Altman plots showed tight (< 6.1 ms) Limits of Agreement (LoAs). The agreement-

analysis delivered high ICC (<0.948) results. Wide LoAs were found for parameters related 

to short-term changes (RMSSD, HF, SD). The GOW textile system can be used for meas-

uring the heart rate during sports, but not as a tool for clinical HRV recording, concluded the 

scientists [40].   
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2 Material and Methods 

The aim of the subject testing was to compare different fitness trackers and a medical ECG-

system as a clinical standard [48]. A statement about data quality of the devices investigated 

followed. Due to a high number of fitness trackers (seven wearables) the project was split 

into two subject tests.  Testing 1 was performed using four wearables (see chapter 2.4.1) in 

summer 2018. Testing 2 was performed using three wearables in spring 2019. The same 

testing procedure (see chapter 2.4.4), data recording (see chapter 2.4.3) and data analysis 

(see chapter 2.5) were used for both investigations.  

 

 

2.1 Search criteria for sensors 

A market analysis concerning availability of wearables with appropriate biosensors was car-

ried out online. Google.com was used as a search engine for devices. The following key-

words and relevant medical terms delivered results which were screened for commercially 

available, wearable devices: “hrv tracker wearable” (186 000 hits), “wrist-worn wearables 

hrv” (111 000 hits), “wearable fitness tracker for hrv” (57 200 hits), “smartwatch hrv test” (120 

000 hits), “smartwatch for heart rate variability” (145 000 hits) “tracking hrv with wearable 

fitness sensor” (171 000 hits), “tracking hrv with smartwatch” (130 000 hits). Due to the high 

number of devices and the exponential growth of the market for wearable biosensors, a well-

structured selection of the devices is obligatory. Five search criteria were defined to restrict 

the search results.  

 

2.1.1 Sensor principle 

Nearly all commercially available, wearable biosensors are based on the ECG or PPG prin-

ciples. Almost without exception all chest-worn devices detect the data with an ECG sensor 

(see explanation in chapter 1.5.1). Devices, worn on the finger, the earlobe or the wrist have 

an integrated PPG sensor (see explanation in chapter 1.5.2). Invasive use of the wearable 

device is an exclusion criterion. HRV detections based on other physical sensor principles 

are not considered in this thesis.    

 

2.1.2 Transfer standard 

Most of the commercially available fitness trackers use Bluetooth or ANT+ to transfer the 

data from the biosensor to the receiving device. When using Bluetooth, the protocol can 

transmit data faster and over a bigger distance than the ANT+ protocol. It is the most com-

mon transfer standard for the connection of fitness trackers. The ANT+ protocol makes it is 

possible to connect several devices with the same wearable biosensor, whereas this is not 

possible with Bluetooth [49]. Some devices enable the data transfer via both standards. 

Other transfer protocols except ANT+ and Bluetooth are not considered in the market 
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analysis of this thesis. The access to the raw peak-to-peak time intervals is obligatory for 

subject testing. Many heart frequency sensors which are available on the market do not 

support the detection of the HRV or a raw data export.   

 

2.1.3 Sampling frequency 

The data quality and the reliability of an HRV measurement depends on the sensor’s sam-

pling rate. A frequency of at least 250 Hz is recommended for long-term HRV measurements 

(see explanation in chapter 1.4.2). Devices with a rate of 1- 50 Hz show inaccurate results 

at the data analysis. A low sampling frequency is an exclusion criterion in this thesis. If the 

sampling frequency of is unknown, the wearable was not excluded automatically. 

 

2.1.4 Documentation & Market Availability 

A proper documentation of the hardware and software of the wearable device is necessary 

for a scientific comparison. There are numerous fitness trackers commercially available on 

the big markets for electronic devices, like in China or South Korea. However, some of them 

lack a user-friendly documentation in English. Wearables without a useful product documen-

tation in English or German were excluded in the thesis. There has been an exponential 

growth in the market for health-related wearables in the last decade. The current fitness 

trend is leading to a high number of wearables available for measuring biosignals. The thesis 

focuses on wearables commercially available on the market. Some future projects which are 

not realised yet, are described in the discussion. The list of chosen sensors (see chapter 

2.3) is only a current selection and could be updated every year.  

 

2.1.5 Mobility 

The thesis focuses on wearable devices like smartwatches, chest straps, finger sensors, ear 

clips or similar. They must be portable and adjustable on a certain position on the human 

body surface. A guaranteed battery supply for at least 24 hours is mandatory. Trackers are 

excluded if a permanent cable link between the sensor and a receiving device is needed. At 

the least it must be possible to measure the HRV during the resting phase and preferably 

during exercise phase on an ergometer. A water-proof cover of the sensor is not required.  

 

 

2.2 Study population & Ethical aspects 

The study population consisted of nine participants (mean age: 28.7, SD: 8.1) for the Subject 

Testing 1 and eight participants (mean age: 22.9, SD: 1.6) for the Subject Testing 2. They 

had to be free from any injuries or illnesses. All volunteers confirmed to having no cardiac 

irregularities like arrhythmia and they were not paid for the effort. They were informed about 

the procedure, the possible risks and the aim of the testing. The subject’s anthropometric 

data (sex, age, weight, height, pulse at rest) can be seen in Table 1 and Table 2. 
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ID sex age weight [kg] height [cm] pulse at rest [bpm] 

1 female 45 63 176 57 

2 female 22 68 175 85 

3 male 27 59 165 44 

4 female 41 50 168 71 

5 male 26 85 192 65 

6 male 28 68 172 64 

7 female 24 74 164 65 

8 male 22 83 170 84 

9 male 22 71 185 65 

Ø - 28.7 69 174.1 66.7 

Table 1: Anthropometric data of participants at the Testing 1 

 

ID sex age weight [kg] height [cm] pulse at rest [bpm] 

10 female 24 53 163 75 

11 male 23 72 182 50 

12 male 25 74 173 60 

13 male 24 70 183 60 

14 female 21 66 179 95 

15 male 22 68 180 55 

16 male 20 60 170 70 

17 male 24 55 170 70 

Ø - 22.9 64.8 175 66.9 

Table 2: Anthropometric data of participants at the Testing 2 

 

The subject testing of this thesis delivered data for a dissertation with similar subject tests. 

All the used biosensors are non-invasive and CE certified. Following an ethics committee 

application (application number: GS1-EK-1/179-2017) the board stated that a vote was not 

necessary because standard incremental tests were being performed. 

 

 

2.3 List of sensors for HRV measurement 

A list of sensors designed for an HRV measurement can be seen in Table 3. The devices 

gathered are based on the search criteria defined (see at chapter 2.1). All the 21 wearables 

are based on either the PPG or the ECG principle. If there is no explicit statement regarding 

the sampling frequency of the sensors on the manufacturer’s web pages, it was defined as 

unknown. The sale price was found in the manufacturer’s webshop in April 2019. 
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Number Model Company Principle Sensor position Sampling Frequency Sale price 

1 AIO sleeve Komodo Tech., USA ECG arm unknown 145 $ 

2 Ambiotex Shirt Ambiotex GmbH, Germany ECG chest 1000 Hz 250 € 

3 Apple Watch 3 Apple Inc, USA PPG wrist unknown 299 € 

4 Biostrap Biostrap LLC, USA PPG wrist unknown 250 $ 

5 Bodyguard 2 Firstbeat Tech., Finland ECG breastbone + chest 1000 Hz 329 € 

6 Cor Sense Elite HRV, USA PPG finger 500 Hz 145 $ 

7 Cova Necklace toSense Inc., USA ECG neck unknown * 

8 EQ02+ LifeMonitor Equivital Ltd., UK ECG chest + shoulders 256 Hz 190 € 

9 GOW Shirt Weartech, Spain ECG chest 250 Hz * 

10 H10 Polar Electro, Finland ECG chest 1000 Hz 90 € 

11 Hexoskin Carre Tech., Canada ECG chest 256 Hz 499 $ 

12 Ithlete finger sensor HRV Fit Ltd., UK PPG finger unknown 55 € 

13 Kyto HRM 2935 Kyto Fitness Tech., China PPG ear unknown 22 € 

14 Microsoft Band 2 Microsoft Corp., USA PPG wrist unknown 120 € 

15 Oura Ring 2 Oura Health Ltd., Finland PPG finger 250 Hz 315 € 

16 Qardiocore Qardio Inc., USA ECG chest 600 Hz 499 € 

17 Suunto smart sensor Suunto, Finland ECG chest 1000 Hz 80 € 

18 VIITA Active Viita Watches GmbH, Austria PPG wrist 80 Hz 399 € 

19 Vitalmonitor Viita Holding G,bH, Austria ECG chest 500 Hz 399 € 

20 Whoop Strap 2 Whoop, USA PPG wrist 100 Hz 500 € 

21 Zoom HRV Life Trak Inc., USA PPG wrist unknown 140 $ 

Table 3: List of sensors designed for an HRV measurement; all the information was gathered in an online research at the manufacturer’s official web pages; un-

known = if there is no explicit statement according the sampling frequency,  PPG = Photoplethysmography, ECG = Electrocardiography; * = the device is currently 

not available or the sale price is unknown;  the sale price was found in the manufacturer’s official webshop in April 2019 
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2.4 Study design 

The study participants performed a five-minute test at a resting phase and a five-minute test 

while exercising phase on an ergometer (see chapter 2.4.1). The subjects had to read a free 

selectable text during the rest measurement.  The heart frequency at rest was measured at 

the start of the testing. The heart frequency during the exercise phase had to be twice the 

frequency at rest if possible. The HRV was measured with different wearables and compared 

to a clinical standard (ECG-system). A setup for subject testing was generated. The de-

scribed preparation and the flow chart of the testing procedure had to be followed (see chap-

ter 2.4.4). Variations of the process required a detailed description and explanation. The 

study design was created for this project. 

 

2.4.1 Equipment 

The exercise test was performed on the Ergo Bike Premium i8 (Daum Electronic GmbH, 

Fürth Germany). The power of the ergometer is adjustable from 20-600 Watt. The Biopac 

MP35 (Biopac Systems Inc, Goleta USA) was used as well as the Biopac SS2LB Lead Set 

for the data recording of the subject’s ECG. The disposable electrodes Blue Sensor P (Ambu 

GmbH, Bad Nauheim Germany) were used for both tests. The wearables used for the Sub-

ject Testing 1 can be seen in Table 4. Every chest strap was moistened before the applica-

tion to reduce the contact impedance. The Firstbeat Bodyguard’s electrodes were placed on 

the right clavicula and below the left pectoralis major.  

 

Nr. Model Company Position Principle 

1 Polar H10 Polar Electro chest ECG 

2 HRM Blue Blue Leza chest ECG 

3 Firstbeat Bodyguard Firstbeat Technologies breastbone + chest ECG 

4 Suunto Smart Sensor Suunto  chest ECG 

Table 4: wearables used for the Subject Testing 1; ECG = Electrocardiography 

 

The wearables used for the Subject Testing 2 can be seen in Table 5. The HRM-2935 bio-

sensor was placed on the subject’s right earlobe. The device could not be placed directly on 

an earlobe piercing. The Zoom HRV smartwatch was positioned about five centimetres be-

low the participant’s left wrist. This wearable device enables a maximum HRV recording time 

of three minutes which had to be considered during data analysis. A data acquisition is only 

possible during a resting phase. Therefore, no raw data were recorded while exercising. A 

quick double press of the Zoom Button activated the HRV data recording at rest. The chest 

strap (Movesense HR) was moistened before the application to reduce the contact imped-

ance. Images of the used biosensors for Subject Testing 1 and 2 can be seen in Appendix 

C. 
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Nr. Model Company Position Principle 

1 Zoom HRV LifeTrak wrist PPG 

2 Movesense HR Suunto chest ECG 

3 HRM-2935 Kyto Technology ear PPG 

Table 5: wearables used for the Subject Testing 2; ECG = Electrocardiography;                             

PPG  = Photoplethysmography 

 

2.4.2 Preparation 

The participants were informed about the procedure, the background of the HRV and the 

goal of the project before the subject testing. Every subject had to sign a declaration of con-

sent (see appendix A) which contained information about risk during the testing and the use 

of personal data. The subject had to adjust the seat to the preferred position and power of 

the ergometer. A skin preparation was required to ensure a high-quality ECG-signal. The 

position for the electrode placement had to be clean, dry and free of body hair to ensure that 

the electrodes stick properly on the body and to reduce the surface impedance [41]. The first 

electrode (white cable) was placed on the sternum and the second electrode (red cable) 

about three centimetres below the left pectoralis major. The reference electrode (black ca-

ble) was placed on the right malleolus lateralis (see Figure 6) and fixed with a strap to reduce 

movement artefacts.  

 

Figure 6: The first electrode (white cable) was placed on the sternum. The second electrode (red 

cable) about three centimetres below the left pectoralis major and the chest belt. The reference 

electrode (black cable) was placed on the right malleolus lateralis. 
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The following requirements had to be observed before the subject testing: 

• No smoking for one hour 

• No exercise for two hours 

• No meal immediately before the testing 

• No alcohol for two hours 

• No relaxation or Yoga immediately before the testing 

 

2.4.3 Data recording 

The signal was processed with the Biopac BSL 4.0 MP35 software (Biopac Systems Inc, 

Goleta USA). The sampling frequency was set to 1000 Hz. The frequency range for detecting 

the signal was set from 0.05 Hz to 150 Hz. An automatic calculation of the RR-values was 

processed. The data processing of the ECG signal can be seen in Figure 7. The recording 

was saved as text-file, Matlab-file and as acq-file (data graph for AcqKnowledge).  

 

 

Figure 7: ECG signal (blue frame) of eight consecutive heart beats with x-axis in seconds and y-axis 

in millivolt. Calculated RR beat intervals (green frame) of the ECG data with x-axis and y-axis in 

seconds. 

 

The wearables were connected to the commercially available smartphone application Elite 

HRV (Elite HRV GmbH, Austin USA) for data recording. An example of the data recording 

can be seen in Figure 8. Every wearable was connected to a separate smartphone. To avoid 

automatic data processing and filtering the function “Open Reading” was used.  
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Figure 8: Zoom HRV smartwatch at Open Reading mode (blue LED is shining) connected to a 

smartphone, running the Elite HRV application. A preview of the current heart frequency and the 

variability can be seen on the screen during data recording. 

 

The raw HRV data (RR-values) were exported and saved as text file. Furthermore, all subject 

data were collected in separated Excel-files. An example of the raw data of Biopac and Polar 

H10 can be seen in Figure 9.  

 

 

Figure 9: An example of the raw data of Biopac and Polar H10 (Subject 1 - Subject 4), collected in 

an Excel-file. This data matrix was used for the further analysis.  
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2.4.4 Testing procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subject must take up rest position on chair 

Apply the three ECG-electrodes  

Apply the wearable biosensors 

Measure heart frequency at rest 

Preparation 1: 

15 minutes 

Recording 1: 

5 minutes 

Recording 2: 

5 minutes 

Post-processing: 

25 minutes 

Preparation 2: 

8 minutes 

Subject must start reading a random text 

Start/finish recording on the app and the ECG 

Subject must take up exercise position on bike 

Subject must increase power until heart fre-
quency is two times heart frequency at rest 

Start/finish recording on the app and the Biopac 

Remove wearable biosensors and electrodes 

Clean and recharge wearable biosensors 

Export and save data from the app and the Biopac 

Clean ergometer and ECG equipment 
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2.5 Data analysis 

The data were processed and analysed with Matlab (MathWorks GmbH Natick USA, 

R2017a) and with Microsoft Excel (Microsoft Corporation Redmond USA, Excel 2016). The 

well-known algorithm of Pan and Tompkin [18] was used for the R-peak detection of the 

ECG data sets, collected from the Biopac MP35 system. It was implemented in a Matlab-file 

and the data sets were exported as a text-file. These RR intervals of the clinical standard 

and the wearable were matched for each testing. The changes of inter-beat-intervals caused 

by breathing allowed a visual synchronisation of the two related data sets. The first 40 pairs 

of the data columns were observed at a plot and manually matched that the smallest error 

was found.  An example of this synchronisation process can be seen in Figure 10. After this, 

a visual inspection of the data sets was performed in Excel. Data pairs with outliers, artefacts 

and missing RR-intervals were marked, deleted and counted for further parameter calcula-

tion (fail_c =fail counter). To ensure an equal length of both data sets the longer one was cut 

in the end.  

 

Figure 10: Plot of the manually synchronised raw data sets (first 40 pairs) for the Biopac (orange 

line) and the Zoom HRV (blue line).  

Data sets with more than 30% missing RR intervals due to connection issues or other prob-

lems during subject testing were excluded from the data analysis (see at chapter 3) and 

noted for each sensor in the results. The further data processing was performed in Matlab. 

All paired values with a difference bigger than 100 milliseconds were deleted and counted 

(fail_c). The numbers of excluded RR intervals during the visual inspection were added to 
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the parameter fail_c. The data sets of the different subjects were merged to have one data 

set for each sensor (at rest and at exercise). All parameters necessary for a Bland-Altman 

plot were calculated in a separate function (e.g. the 2SD confidence limits, the SD of the 

data set 1+2, the mean value of the data set 1+2). The LoA, the Bias and the percentage of 

failures (p_fail) were calculated. Furthermore, the Pearson´s Correlation Coefficients for rest 

and exercise were computed using the Matlab function “corr2”. The relative error between 

the clinical standard and every sensor was calculated. The Bland-Altman plot and the results 

of the calculation for each sensor can be seen in chapter 3. The x-axes and y-axes were 

adapted to the scope of the data sets. The scatterplots were computed using the Matlab 

function “scatter” with a linear fit of the values (see at chapter 4.2). The data processed were 

uploaded to the Kubios HRV Standard software (Kubios Oy, Kuopio Finland) to calculate the 

parameters of interest (Mean RR, SDNN, Mean HR, RMSSD, pNN50, SD1, SD2) for each 

sensor at rest and exercise. Due to the previous data processing in Matlab no further artefact 

correction was made in Kubios HRV. The user interface of this software tool for HRV analysis 

during executing an example can be seen in Appendix B. 

 

 

3 Results 

The Pearson’s Correlation Coefficients for all seven sensors at rest and exercise can be 

seen in Table 6. A Correlation Coefficient of nearly 1 means that the two sensors show a 

strong linear relation and a Coefficient of nearly 0 means that the two sensors show a weak 

linear relation. The Zoom HRV smartwatch provides raw data only during rest. Therefore, no 

results are displayed for this sensor at exercise (see chapter 2.4.1). The number of excluded 

subjects at the data processing of every wearable is stated in the corresponding section. 

The red line in the Bland-Altman plot shows the Bias. The two grey lines show the LoA of all 

datapoints. The parameter p_fail describes the percentage of failed inter-beat-intervals (see 

description at chapter 2.5). The results are presented in the labelling of every plot.   

 

  Pearson Cor. - Rest Pearson Cor. - Exercise 

Polar H10 0.999993 0.999719 

HRM Blue 0.999987 0.999668 

Firstbeat Bodyguard 0.999990 0.999923 

Suunto Smart Sensor 0.999991 0.999734 

Zoom HRV 0.961789 - 

Movesense HR 0.999984 0.999639 

HR - 2935 0.975603 0.917112 

Table 6: Calculated Pearson’s Correlation Coefficient for all wearables used for the subject tests (at 

rest and at exercise). The Zoom HRV smartwatch provides raw data only during rest. A Coefficient 

of nearly 1 means that the two sensors show a strong linear relation and a Coefficient of nearly 0 

means that the two sensors show a weak linear relation. 
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3.1 Polar H10 

 

Figure 11: Bland-Altman plot of the Polar H10 at rest. The red line in the Bland-Altman plot shows 

the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents one pair of 

data points. The parameter p_fail describes the percentage of failed inter-beat-intervals. Both axes 

are described in milliseconds. Bias = -0.05 ms; LoA = 1.41 to -1.51 ms; p_fail = 0.17 % 

 

Subject 7 was excluded due to connection issues, a high number of artefacts or because of 

other problems during subject testing. The Bland-Altman plot is presented in Figure 11. The 

calculated HRV parameters and the relative errors are listed in Table 7. 

 

REST 

 Biopac Polar Relative Error [%] 

Mean RR (ms) 903.24 903.29 0.01  

SDNN (ms) 74.79 74.71 0.11 

Mean HR (bpm) 66.43 66.42 0.02 

RMSSD (ms) 86.01 85.91 0.12 

pNN50 (%) 30.32 30.39 0.23 

SD1 (ms) 60.82 60.76 0.10 

SD2 (ms) 86.55 86.47 0.09 

Table 7: Calculated HRV parameters and the relative errors of the Polar H10 at rest.  
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Figure 12: Bland-Altman plot of the Polar H10 at exercise. The red line in the Bland-Altman plot 

shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents one 

pair of data points. The parameter p_fail describes the percentage of failed inter-beat-intervals. Both 

axes are described in milliseconds. Bias = 0.06 ms; LoA = 4.12 to -4.2 ms; p_fail = 0.26 % 

 

Subject 9 was excluded due to connection issues, a high number of artefacts or because of 

other problems during subject testing. The Bland-Altman plot is presented in Figure 12. The 

calculated HRV parameters and the relative errors are listed in Table 8. 

 

EXERCISE 

 Biopac Polar Relative Error [%] 

Mean RR (ms) 452.69 452.75 0.01 

SDNN (ms) 13.73 13.68 0.36 

Mean HR (bpm) 132.54 132.52 0.02 

RMSSD (ms) 10.13 9.95 1.78 

pNN50 (%) 0.38 0.35 7.89 

SD1 (ms) 7.16 7.03 1.82 

SD2 (ms) 18.06 18.02 0.22 

Table 8: Calculated HRV parameters and the relative errors of the Polar H10 at exercise. 
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3.2 HRM Blue 

 

Figure 13: Bland-Altman plot of the HRM Blue at rest. The red line in the Bland-Altman plot shows 

the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents one pair of 

data points. The parameter p_fail describes the percentage of failed inter-beat-intervals. Both axes 

are described in milliseconds. Bias = 0.29 ms; LoA = 5.94 to -5.36 ms; p_fail = 0.90 % 

 

Subject 7 was excluded due to connection issues, a high number of artefacts or because of 

other problems during subject testing. The Bland-Altman plot is presented in Figure 13. The 

calculated HRV parameters and the relative errors are listed in Table 9. 

 

REST 

 Biopac HRM Blue Relative Error [%] 

Mean RR (ms) 907.99 907.70 0.03 

SDNN (ms) 63.62 63.83 0.33 

Mean HR (bpm) 66.08 66.10 0.03 

RMSSD (ms) 82.52 82.85 0.40 

pNN50 (%) 31.38 31.51 0.41 

SD1 (ms) 58.36 58.60 0.41 

SD2 (ms) 68.50 68.68 0.26 

Table 9: Calculated HRV parameters and the relative errors of the HRM Blue at rest. 
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Figure 14: Bland-Altman plot of the HRM Blue at exercise. The red line in the Bland-Altman plot 

shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents one 

pair of data points. The parameter p_fail describes the percentage of failed inter-beat-intervals. Both 

axes are described in milliseconds. Bias = 0.32 ms; LoA = 5.37 to -4.73 ms; p_fail = 0.36 % 

 

Subjects 4+7+8 were excluded due to connection issues, a high number of artefacts or be-

cause of other problems during subject testing. The Bland-Altman plot is presented in Figure 

14. The calculated HRV parameters and the relative errors are listed in Table 10. 

 

EXERCISE 

 Biopac HRM Blue Relative Error [%] 

Mean RR (ms) 466.55 466.23 0.07 

SDNN (ms) 14.11 14.23 0.85 

Mean HR (bpm) 128.60 128.69 0.07 

RMSSD (ms) 9.63 9.96 3.43 

pNN50 (%) 0.19 0.21 10.53 

SD1 (ms) 6.81 7.05 3.52 

SD2 (ms) 18.76 18.86 0.53 

Table 10: Calculated HRV parameters and the relative errors of the HRM Blue at exercise. 
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3.3 Firstbeat Bodyguard 

 

Figure 15: Bland-Altman plot of the Firstbeat Bodyguard at rest. The red line in the Bland-Altman 

plot shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents 

one pair of data points. The parameter p_fail describes the percentage of failed inter-beat-intervals. 

Both axes are described in milliseconds. Bias = -0.04 ms; LoA = 3.79 to -3.86 ms; p_fail = 0.16 % 

 

No subject was excluded due to connection issues, a high number of artefacts or because 

of other problems during subject testing. The Bland-Altman plot is presented in Figure 15. 

The calculated HRV parameters and the relative errors are listed in Table 11. 

 

REST 

 Biopac Firstbeat Relative Error [%] 

Mean RR (ms) 923.30 923.34 0.004 

SDNN (ms) 84.84 84.67 0.20 

Mean HR (bpm) 64.98 64.98 0.00 

RMSSD (ms) 98.95 98.79 0.16 

pNN50 (%) 33.45 33.22 0.69 

SD1 (ms) 69.98 69.86 0.17 

SD2 (ms) 97.47 97.26 0.22 

Table 11: Calculated HRV parameters and the relative errors of the Firstbeat Bodyguard at rest. 
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Figure 16: Bland-Altman plot of the Firstbeat at exercise. The red line in the Bland-Altman plot 

shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents one 

pair of data points. The parameter p_fail describes the percentage of failed inter-beat-intervals. Both 

axes are described in milliseconds. Bias = -0.02 ms; LoA = 2.83 to -2.87 ms; p_fail = 0.05 % 

 

Subject 8 was excluded due to connection issues, a high number of artefacts or because of 

other problems during subject testing. The Bland-Altman plot is presented in Figure 16. The 

calculated HRV parameters and the relative errors are listed in Table 12. 

 

EXERCISE 

 Biopac Firstbeat Relative Error [%] 

Mean RR (ms) 458.29 458.31 0.004 

SDNN (ms) 12.53 12.67 1.12 

Mean HR (bpm) 130.92 130.91 0.01 

RMSSD (ms) 8.81 9.21 4.54 

pNN50 (%) 0.14 0.16 14.29 

SD1 (ms) 6.23 6.52 4.65 

SD2 (ms) 16.59 16.70 0.66 

Table 12: Calculated HRV parameters and the relative errors of the Firstbeat at exercise. 
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3.4 Suunto Smart Sensor 

 

Figure 17: Bland-Altman plot of the Suunto at rest. The red line in the Bland-Altman plot shows the 

Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents one pair of data 

points. The parameter p_fail describes the percentage of failed inter-beat-intervals. Both axes are 

described in milliseconds. Bias = 0.46 ms; LoA = 2.14 to -1.21 ms; p_fail = 0 % 

 

No subject was excluded due to connection issues, a high number of artefacts or because 

of other problems during subject testing. The Bland-Altman plot is presented in Figure 17. 

The calculated HRV parameters and the relative errors are listed in Table 13. 

 

REST 

 Biopac Suunto Relative Error [%] 

Mean RR (ms) 902.48 902.02 0.05 

SDNN (ms) 74.63 74.57 0.08 

Mean HR (bpm) 66.48 66.52 0.06 

RMSSD (ms) 85.81 85.72 0.10 

pNN50 (%) 30.19 30.10 0.30 

SD1 (ms) 60.69 60.62 0.12 

SD2 (ms) 86.37 86.31 0.07 

Table 13: Calculated HRV parameters and the relative errors of the Suunto at rest. 
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Figure 18: Bland-Altman plot of the Suunto at exercise. The red line in the Bland-Altman plot shows 

the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents one pair of 

data points. The parameter p_fail describes the percentage of failed inter-beat-intervals. Both axes 

are described in milliseconds. Bias = 0.39 ms; LoA = 4.48 to -3.71 ms; p_fail = 0 % 

 

Subject 7 was excluded due to connection issues, a high number of artefacts or because of 

other problems during subject testing. The Bland-Altman plot is presented in Figure 18. The 

calculated HRV parameters and the relative errors are listed in Table 14. 

 

EXERCISE 

 Biopac Suunto Relative Error [%] 

Mean RR (ms) 454.67 454.38 0.06 

SDNN (ms) 13.88 13.76 0.86 

Mean HR (bpm) 131.96 132.05 0.07 

RMSSD (ms) 10.04 9.45 5.88 

pNN50 (%) 0.35 0.29 17.14 

SD1 (ms) 7.10 6.68 5.92 

SD2 (ms) 18.30 18.28 0.11 

Table 14: Calculated HRV parameters and the relative errors of the Suunto at exercise. 
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3.5 Zoom HRV 

 

Figure 19: Bland-Altman plot of the Zoom HRV at rest. The red line in the Bland-Altman plot shows 

the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents one pair of 

data points. The parameter p_fail describes the percentage of failed inter-beat-intervals. Both axes 

are described in milliseconds. Bias = 0.57 ms; LoA = 74.48 to -73.34 ms; p_fail = 9.57 % 

 

Subject 11 was excluded due to connection issues, a high number of artefacts or because 

of other problems during subject testing. The Bland-Altman plot is presented in Figure 19. 

The calculated HRV parameters and the relative errors are listed in Table 15. 

 

REST 

 Biopac Zoom Relative Error [%] 

Mean RR (ms) 858.04 854.43 0.42 

SDNN (ms) 54.74 63.49 15.98 

Mean HR (bpm) 69.93 70.22 0.41 

RMSSD (ms) 54.48 70.08 28.63 

pNN50 (%) 23.85 34.06 42.81 

SD1 (ms) 38.54 49.58 28.65 

SD2 (ms) 67.17 74.90 11.51 

Table 15: Calculated HRV parameters and the relative errors of the Zoom HRV at rest. 
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3.6 Movesense HR 

 

Figure 20: Bland-Altman plot of the Movesense HR at rest. The red line in the Bland-Altman plot 

shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents one 

pair of data points. The parameter p_fail describes the percentage of failed inter-beat-intervals. Both 

axes are described in milliseconds. Bias = 0.52 ms; LoA = 2.35 to -1.31 ms; p_fail = 0.05 % 

 

No subject was excluded due to connection issues, a high number of artefacts or because 

of other problems during subject testing. The Bland-Altman plot is presented in Figure 20. 

The calculated HRV parameters and the relative errors are listed in Table 16. 

 

REST 

 Biopac Movesense Relative Error [%] 

Mean RR (ms) 878.24 877.72 0.06 

SDNN (ms) 53.42 53.35 0.13 

Mean HR (bpm) 68.32 68.36 0.06 

RMSSD (ms) 54.65 54.49 0.29 

pNN50 (%) 24.18 23.60 2.40 

SD1 (ms) 38.65 38.54 0.28 

SD2 (ms) 64.93 64.87 0.09 

Table 16: Calculated HRV parameters and the relative errors of the Movesense HR at rest. 
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Figure 21: Bland-Altman plot of the Movesense HR at exercise. The red line in the Bland-Altman 

plot shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents 

one pair of data points. The parameter p_fail describes the percentage of failed inter-beat-intervals. 

Both axes are described in milliseconds. Bias = 0.47 ms; LoA = 3.14 to -2.19 ms; p_fail = 0.04 % 

 

Subjects 10 was excluded due to connection issues, a high number of artefacts or because 

of other problems during subject testing. The Bland-Altman plot is presented in Figure 21. 

The calculated HRV parameters and the relative errors are listed in Table 17. 

 

EXERCISE 

 Biopac Movesense Relative Error [%] 

Mean RR (ms) 486.76 486.30 0.09 

SDNN (ms) 11.51 11.49 0.17 

Mean HR (bpm) 123.26 123.38 0.1 

RMSSD (ms) 10.47 10.51 0.38 

pNN50 (%) 0.62 0.62 0.00 

SD1 (ms) 7.40 7.43 0.41 

SD2 (ms) 14.50 14.46 0.28 

Table 17: Calculated HRV parameters and the relative errors of the Movesense HR at exercise. 
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3.7 HRM-2935 

 

Figure 22: Bland-Altman plot of the HRM 2935 at rest. The red line in the Bland-Altman plot shows 

the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents one pair of 

data points. The parameter p_fail describes the percentage of failed inter-beat-intervals. Both axes 

are described in milliseconds. Bias = -4.06 ms; LoA = 62.55 to -70.67 ms; p_fail = 4.70 % 

 

Subjects 10+13+15 were excluded due to connection issues, a high number of artefacts or 

because of other problems during subject testing. The Bland-Altman plot is presented in 

Figure 22. The calculated HRV parameters and the relative errors are listed in Table 18. 

 

REST 

 Biopac HRM-2935 Relative Error [%] 

Mean RR (ms) 878.81 877.56 0.14 

SDNN (ms) 55.57 69.37 24.83 

Mean HR (bpm) 68.27 68.37 0.15 

RMSSD (ms) 57.29 83.32 45.44 

pNN50 (%) 24.50 43.07 75.80 

SD1 (ms) 40.52 58.93 45.43 

SD2 (ms) 67.23 78.37 16.57 

Table 18: Calculated HRV parametesr and the relative errors of the HRM 2935 at rest. 
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Figure 23: Bland-Altman plot of the HRM Blue at rest. The red line in the Bland-Altman plot shows 

the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents one pair of 

data points. The parameter p_fail describes the percentage of failed inter-beat-intervals. Both axes 

are described in milliseconds. Bias = -0.67 ms; LoA = 44.15 to -45.49 ms; p_fail = 1.64 % 

 

Subjects 10+13+14 were excluded due to connection issues, a high number of artefacts or 

because of other problems during subject testing. The Bland-Altman plot is presented in 

Figure 23. The calculated HRV parameters and the relative errors are listed in Table 19. 

 

 

EXERCISE 

 Biopac HRM-2935 Relative Error [%] 

Mean RR (ms) 504.71 505.04 0.07 

SDNN (ms) 7.94 25.09 215.99 

Mean HR (bpm) 118.88 118.80 0.07 

RMSSD (ms) 6.51 33.51 414.75 

pNN50 (%) 0.21 10.96 5119.05 

SD1 (ms) 4.61 23.70 414.10 

SD2 (ms) 10.25 26.41 157.66 

Table 19: Calculated HRV parameters and the relative errors of the HRM 2935 at exercise. 
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3.8 Absolute Errors: 

The Mean Absolute Errors for the parameters of interest of all wearables can be seen in 

Table 20. It is the mean difference between each parameter of the clinical standard and of 

the biosensor. Due to the missing data set of the Zoom HRV at exercise the smartwatch was 

not considered in this calculation. The standard deviations of the results are listed beside in 

brackets. The selection of the parameters of interest was made by the author before the 

subject testing. 

 

 Absolute Error - Rest (SD) Absolute Error - Exercise (SD) 

Mean RR (ms) 0.44 (0.45) 0.25 (0.17) 

SDNN (ms) 2.40 (5.59) 2.95 (6.96) 

Mean HR (bpm) 0.04 (0.04) 0.07 (0.04) 

RMSSD (ms) 4.48 (10.56) 4.76 (10.90) 

pNN50 (%) 3.28 (7.49) 1.81 (4.38) 

SD1 (ms) 3.17 (7.47) 3.37 (7.70) 

SD2 (ms) 1.96 (4.50) 2.76 (6.56) 

Table 20: Mean Absolute Errors of all wearables at rest and exercise. Due to the missing data set of 

the Zoom HRV at exercise, the smartwatch was not considered in this calculation. The standard de-

viations of the results are listed beside in brackets. 

 

 

4 Discussion 

Only the most important information is mentioned in the section “The background of the 

HRV” (see at chapter 1.2). For a deeper insight in HRV analysis, primary literature like “A 

Review of Heart Rate Variability and its Applications”, by C.D. Hoang  [43], “Hear Rate Var-

iability: Clinical Applications and Interaction between HRV and Hear Rate”, by K. Trimmel 

[41] or “Herzratenvariabilität: Das HRV-Praxis-Lehrbuch”, by A. Lohninger [15] are recom-

mended. It must be considered, that the online market analysis shows only a small section 

of all wearables available (see at chapter 2.3) and could be updated from time to time. The 

study design was explicitly created for this project (see at chapter 2.4.4). Therefore, a suc-

cessful use of the setup in another scientific study cannot be guaranteed. For a better inter-

pretation of the data quality and the usability of PPG-based sensors a higher number of 

different devices would be necessary. 

 

4.1 Market analysis 

Due to the growing market for healthcare and fitness, many different wearable biosensors 

are available. More than 30 percent of the people in the world are tracking their fitness level 

or their health with a wearable [2].Usually there is a lack of scientific validations of the 
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devices. Most of the available studies only validate the heart rate estimation or the heart 

frequency [1] [6]. This fact makes a use of the wearables for medical HRV analysis impossi-

ble. The manufacturers explicitly point out that it is not a medical device, so there is no time 

consuming and expensive validation mandatory [5]. Furthermore, most of them do not pub-

lish how they implement data analysis and how they calculate the HRV parameters. For now, 

there is no mandatory guideline for the calculation of HRV in medicine available [41]. It is 

usually impossible to gain access to the raw data of the biosensors and the sampling fre-

quency is often unknown. Therefore, it is difficult to interpret the data quality of these bio-

sensors without any scientific data analysis. All PPG-based devices investigated are appli-

cable for short-term use only [8]. The manufacturers of those sensors recommend an HRV 

measurement during rest [7]. For an extensive HRV analysis a long-term measurement in-

cluding an exercise period and a period of cognitive work would deliver better results. During 

the online research occurred, that many manufacturers do not state out the big differences 

between a heartrate measurement and an HRV measurement. Therefore, costumers may 

not understand the requirements, conditions and advantages of this method. It can be said 

that ECG-based sensors are placed on the chest and PPG-based sensors on the wrist or 

finger [8]. Exceptions are wearables placed on the earlobe, the arm, the neck or the shoul-

ders (see at chapter 2.3).  

 

 

4.2 Correlation between the sensors 

The Pearson´s Correlation Coefficient shows how well 2 data sets are linear related. It gives 

you information about the relationship of the curves but not about the slope [50]. Scientists 

published a method as a guideline to interpret this correlation coefficient. Furthermore, a 

visual inspection of a corresponding scatterplot is a helpful tool to analyse the correlation of 

the data sets [51]. A coefficient of zero means there is no relation between the data sets. If 

the correlation coefficient is close to minus 1 there is a very strong negative relation. If the 

correlation coefficient is close to plus 1 there is a very strong positive relation between the 

data sets [50].  

 

All calculated Pearson’s Correlation Coefficients of the subject tests show a very strong pos-

itive relation between the clinical standard (Biopac MP35) and each biosensor. They detailed 

results can be seen at Table 6. The highest correlation was found at the Polar H10 at rest 

(R=0.999993) and can be seen in a scatterplot in Figure 24. The lowest correlation was 

found at the HR-2935 sensor at exercise (R=0.917112) and can be seen in a scatterplot in 

Figure 25. All ECG-based sensors show an extremely high correlation at rest and exercise. 

The two PPG-based wearables show a lower correlation. There were no big differences 

found in the results at rest and at exercise recognizable. The linear fits of all scatterplots are 

similar with an angle of about 45°.  
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Figure 24: Scatterplot of the Polar H10 sensor and the clinical standard at rest. R is the Pearson’s 

Correlation Coefficient. The x-axis represents the RR-values of the Biopac MP35 in milliseconds. 

The y-axis represents the RR-values of the Polar H10 in milliseconds. Every blue dot represents 

one pair of data points. The red line is the linear fit of all data points.  

 

 

Figure 25: Scatterplot of the HRM-2935 at and the clinical standard at exercise. R is the Pearson’s 

Correlation Coefficient. The x-axis represents the RR-values of the Biopac MP35 in milliseconds. 

The y-axis represents the RR-values of the HRM-2935 in milliseconds. Every blue dot represents 

one pair of data points. The red line is the linear fit of all data points.  
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4.3 Data quality of the sensors 

The Polar H10, the Firstbeat Bodyguard, the Suunto Smart Sensor and the Movesense HR 

delivered high-quality data at rest and at exercise and are therefore recommended for an 

HRV recording. A maximum of one subject had to be excluded during data analysis due to 

connection issues, a high number of artefacts or because of other problems during subject 

testing. Thus, a high number of data points was used for the calculation of the HRV param-

eters. Due to the small absolute values of the parameters RMSSD, pNN50, and SD1 during 

exercise the corresponding relative errors are significantly higher (up to 17.14 %) compared 

to the other parameters. It must be considered, that pNN50 is not meaningful during a short-

term recording at exercise due to the physiological decrease of the HRV [52]. All the other 

parameters demonstrate very small relative errors at rest (<0.26%) and at exercise 

(<1.12%). Furthermore, the results of these four devices show a very low percentage of 

failed R-peaks at rest (<0.17%) and at exercise (<0.26%). This test results are confirmed 

with very tight LoA at rest (<3.79 to -3.86 ms) and at exercise (<4.48 to -3.71 ms). The bias 

in the Bland-Altman plots are close to zero for all chest straps. The maximum aberrance 

calculated is 0.52 milliseconds. The HRM Blue shows small relative errors at rest and at 

exercise but several problems at the usability (see at chapter 4.5). Due to problems during 

testing four participants in total had to be excluded at the data analysis. The percentage of 

failed R-peaks (<0.9%) is higher than the values of all the other chest straps, but still low. 

The LoA at rest (5.94 to -5.36 ms) and at exercise (5.37 to -4.73 ms) are acceptable for an 

HRV measurement. Like all other chest straps, the HRM Blue shows significantly higher 

relative errors for RMSSD, pNN50 and SD1 at exercise than for the other HRV parameters. 

The Zoom HRV smartwatch delivers small relative errors for the Mean RR and the Mean HR 

(<0.42%) at rest. Due to this test result, a heart frequency measurement can be recom-

mended. All other parameters show high relative errors up to 42.81 %. The LoA are consid-

erably high (74.48 to -73.34 ms). Furthermore, the percentage of failed R-peaks is signifi-

cantly higher (9.57%). Only one subject had to be excluded during data analysis and the 

bias in the Bland-Altman (0.57 ms) plot is close to zero. However, the use of the Zoom HRV 

for an extended analysis cannot be recommended. The HRM-2935 earclip shows small rel-

ative errors for the Mean RR and the Mean HR at rest (<0.15%) and at exercise (<0.07%). 

Due to this test result, a heart frequency measurement with a high accuracy is possible. All 

other parameters show high relative errors (up to 75.8%) at rest and extremely high relative 

errors (up to 5119%) at exercise. Surprisingly, the LoA at rest (62.55 to -70.67 ms) is higher 

than the LoA at exercise (44.15 to -45.49 ms). Furthermore, the percentage of failed R-peaks 

is higher at rest (4.70%) than at exercise (1.64%). It is supposed, that the earclip cannot 

deliver high-quality data if the variability is increased (at rest). The result shows a bias in the 

Bland-Altman plot of -4.06 milliseconds at rest and of -0.67 milliseconds at exercise. Sum-

ming up, it can be said, that the HRM-2935 earclip measures the Mean HR and the Mean 

RR with high accuracy but delivers unprecise results for all the other HRV parameters. 
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4.4 Absolute errors of the sensors 

The Mean Absolute Errors for the parameters of interest of all wearables can be seen in 

Table 20. It can be said, that the accuracy of the parameters of interest varies. The Mean 

Absolute Errors of the Mean RR (0.25 to 0.44 ms) and the Mean HR (0.04 to 0.07 bpm) are 

small with a small standard deviation at rest and at exercise. Therefore, a high accurate 

measurement of this parameter can be guaranteed. The result shows a difference in SDNN 

of 2.4 ms at rest and 2.95 ms at exercise. The difference in SD2 is 1.96 ms at rest and 2.76 

ms at exercise. The results of both, SDNN and SD2, are acceptable for short-term HRV 

measurement but they must be considered. The difference in pNN50 is smaller at exercise 

(1.81 %) than at rest (3.28%) but with a high standard deviation. It can be argued, that the 

pNN50 is very small at exercise anyway. Therefore, this parameter is not meaningful during 

a short-term measurement at exercise [52]. The results show a difference in RMSSD of 4.48 

ms at rest and 4.76 ms at exercise. The difference in SD1 is 3.17 ms at rest and 3.37 ms at 

exercise. The results of both show a high standard deviation (up to 10.90 ms). Therefore, 

the errors of this parameters are not acceptable for an HRV analysis. The data quality of 

ECG-based sensors is doubtless higher than the data quality of PPG-based sensors (see at 

chapter 3). To outline the differences between the sensor principles, the mean absolute er-

rors of only the ECG-based wearables were calculated and can be seen in Table 21. All 

parameters show very small absolute errors at rest and at exercise. The standard deviations 

are small as well. Therefore, all parameters in Table 21 are acceptable for an interpretation 

in an HRV analysis. 

 

 Absolute Error - Rest (SD) Absolute Error - Exercise (SD) 

Mean RR (ms) 0.27 (0.22) 0.23 (0.19) 

SDNN (ms) 0.12 (0.07) 0.11 (0.08) 

Mean HR (bpm) 0.02 (0.02) 0.07 (0.05) 

RMSSD (ms) 0.17 (0.10) 0.31 (0.21) 

pNN50 (%) 0.22 (0.21) 0.03 (0.02) 

SD1 (ms) 0.12 (0.07) 0.22 (0.15) 

SD2 (ms) 0.11 (0.08) 0.08 (0.08) 

Table 21: Mean Absolute Errors of ECG-based (n=5) wearables at rest and exercise. The standard 

deviations of the results are listed beside in brackets. 

 

4.5 Usability 

All chest straps were equipped with new batteries before the start of the first subject testing. 

No problems with the power supply were identified during the whole time period of testing. 

Therefore, a change of battery was not necessary. The usability of the ECG-based devices 

was excellent. After the application of the sensor and the electrode on the chest it starts 
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connecting automatically. None of these wearables showed bigger connectivity problems via 

Bluetooth. The sensors stay in the stand-by mode after disconnection to expand battery life. 

This easy and reliable structure of the chest straps would be a big advantage for use in 

medical applications. Some problems with the single wearables occurred during subject test-

ing. The Suunto Smart Sensor delivered high-quality data, showed a reliable usability and 

only view missed beats during testing. The HRM Blue showed regular connectivity problems. 

Reliable data were only derived if the strap was really wet and tightly applicated on the chest. 

The Bluetooth connection interrupted sometimes during the testing and it delivered more 

missed beats. Therefore, the use of another chest strap for an HRM measurement is recom-

mended. The Polar H10 showed a reliable usability without any connectivity problems. Only 

view missed beats were recognised during data analysis. The Firstbeat Bodyguard delivered 

excellent data quality without any missed R-peaks. It is necessary to attach two disposable 

electrodes on the chest (see at chapter 2.4.1). Therefore, the use of a chest belt for daily 

measurements is recommended. The PPG-based biosensors delivered many complications 

regarding usability. The HRM-2935 earclip showed many connectivity problems during test-

ing at rest and exercise. The Bluetooth connection interrupted sometimes at unknown rea-

sons. Furthermore, the device did not show the battery level as expected. The device 

couldn’t be placed directly on an earlobe piercing. It delivered many missed R-peaks, espe-

cially during exercise. To avoid wrong measurements a one-minute stabilization period was 

necessary. A use of the earclip during sports or for long-term measurements cannot be rec-

ommended. The Zoom HRV showed many connectivity problems during testing at rest. It 

does not have a display, so the user must know the meaning of the different blinking diodes. 

Furthermore, the data acquisition was interrupted immediately if the arm was moved a little 

bit. Therefore, a measurement during exercise on the ergometer was not possible. To avoid 

wrong measurements a one-minute stabilization period was necessary. The Zoom HRV only 

enables three-minutes recording. The wearable delivers many missed R-peaks. Therefore, 

the use of the smartwatch for a proper HRV analysis cannot be recommended. 

 

 

4.6 Subject Testing 

Due to the high number of tested devices at the same time, it was not easy to ensure a high-

quality recording of the HRV. If one sensor showed connectivity problems, the whole testing 

procedure had to be restarted. Therefore, the subject testing took a longer time period than 

expected. For similar, scientific investigations, it is recommended to use less biosensors 

simultaneously at one recording. More participants for the subject tests would increase the 

validity of the study. The average age of the participants was only 25.9 years. More subjects 

in different age groups and with different fitness levels would have improved the expressive-

ness of the results as well. All the subject tests were conducted by the author of this thesis 

alone. For a fast and synchronized process of the testing an assistant would have been 

helpful.  



 

49 

4.7 Conclusion & Outlook 

The results indicate big differences in data quality between ECG-based and PPG-based 

biosensors. All wearables show a very strong correlation with the clinical standard. The er-

rors calculated are different at the single HRV parameters. The ECG-based devices deliv-

ered very small standard deviations, relative and absolute errors at rest and at exercise. A 

simple and robust usability and a good peak detection were found. It can be concluded, that 

ECG-based sensors could be used for some medical applications, like an accurate meas-

urement of the heart rate or the HRV. PPG-based sensors delivered large standard devia-

tions, relative and absolute errors. Due to these results, difficulties at the usability and regular 

problems during the subject tests they are not recommendable for medical use. However, a 

private use of PPG-based sensors for heart rate detection can be recommended. The market 

analysis showed a huge growth of the market for wearable biosensors right now. The access 

to the raw data of the sensors is impossible for most of the devices. Therefore, a scientific 

data validation is difficult. Improved or new sensors with higher sampling frequencies, better 

analyse algorithms and an enhanced usability will be developed in the next years. Therefore, 

a use of PPG-based sensors like smartwatches, ear clips or finger sensors for an accurate 

HRV measurement could be possible in the future. In particular, for long-term surveillance 

and in the home-care sector it would be a great improvement if vital signs like the heart 

frequency or the HRV could be measured with common available wearables or gadgets of 

the everyday life.  



 

50 

Bibliography 
 
[1] A. Henriksen et al., “Using Fitness Trackers and Smartwatches to Measure Physical 

Activity in Research: Analysis of Consumer Wrist-Worn Wearables,” J Med Internet 
Res, vol. 20, no. 3, Mar. 2018. 
 

[2] “Global Studies - Fitness tracking,” 09-Apr-2019. [Online]. Available: 
https://www.gfk.com/global-studies/global-studies-fitness-tracking/. [Accessed: 02-Jul-
2019]. 

 
[3] “Wearables: A healthcare fad or revolution?,” Medical Economics, 10-Dec-2015. 

[Online]. Available: https://www.medicaleconomics.com/medical-
economics/news/wearables-healthcare-fad-or-revolution. [Accessed: 02-Jul-2019]. 

 
[4] “Sport-Branche: Das Geschäft mit der Fitness boomt.” [Online]. Available: 

http://www.handelsblatt.com/unternehmen/dienstleister/sport-branche-das-geschaeft-
mit-der-fitness-boomt/8041422.html. [Accessed: 20-May-2018]. 

 
[5] L. Coorevits and T. Coenen, “The Rise and Fall of Wearable Fitness Trackers,” 2016. 
 
[6] “Wearables – die smarte Revolution des Gesundheitswesens.” [Online]. Available: 

https://www.t-systems.com/at/de/newsroom/blickwinkel/internet-of-
things/iot/wearables-554602. [Accessed: 02-Jul-2019]. 

 
[7] W. C. Dobbs et al., “The Accuracy of Acquiring Heart Rate Variability from Portable 

Devices: A Systematic Review and Meta-Analysis,” Sports Med, vol. 49, no. 3, pp. 417–
435, Mar. 2019. 

 
[8] K. Georgiou, A. V. Larentzakis, N. N. Khamis, G. I. Alsuhaibani, Y. A. Alaska, and E. J. 

Giallafos, “Can Wearable Devices Accurately Measure Heart Rate Variability? A 
Systematic Review,” Folia Medica, vol. 60, no. 1, pp. 7–20, Mar. 2018. 

 
[9] S. Sammito, B. Thielmann, R. Seibt, A. Klussmann, M. Weippert, and I. Böckelmarn, 

“Nutzung der herzschlagfrequenz und der herzfrequenzvariabilität in der 
arbeitsmedizin und der arbeitswissenschaft,” vol. 51, pp. 123–141, Feb. 2016. 

 
[10] N. S. Chudy, “Testing of Wrist-Worn-Fitness-Tracking Devices During Cognitive 

Stress: A Validation Study,” Unpublished, 2017. 
 
[11] D. Plews, B. Scott, M. Altini, M. Wood, A. Kilding, and P. Laursen, “Comparison of 

Heart Rate Variability Recording With Smart Phone Photoplethysmographic, Polar H7 
Chest Strap and Electrocardiogram Methods,” International Journal of Sports 
Physiology and Performance, vol. 12, pp. 1–17, Mar. 2017. 

 
[12] D. Hernando, S. Roca, J. Sancho, Á. Alesanco, and R. Bailón, “Validation of the Apple 

Watch for Heart Rate Variability Measurements during Relax and Mental Stress in 
Healthy Subjects,” Sensors, vol. 18, no. 8, p. 2619, Aug. 2018. 

 
[13] “Cardiac conduction system - Health Video: MedlinePlus Medical Encyclopedia.” 

[Online]. Available: https://medlineplus.gov/ency/anatomyvideos/000021.htm. 
[Accessed: 03-Mar-2019]. 

 



 

51 

[14] A. Faller, M. Schünke, and G. Schünke, Der Körper des Menschen: Einführung in Bau 
und Funktion, 15., komplett überarb. Aufl. Stuttgart: Thieme, 2008. 

 
[15] A. Lohninger, Herzratenvariabilität: das HRV-Praxis-Lehrbuch. Wien: facultas, 2017. 
 
[16] “(PDF) Heart rate variability: Standards of measurement, physiological interpretation, 

and clinical use,” ResearchGate. [Online]. Available: 
https://www.researchgate.net/publication/279548912_Heart_rate_variability_Standard
s_of_measurement_physiological_interpretation_and_clinical_use. [Accessed: 27-
Feb-2019]. 

 
[17] D. Eller-Berndl, Herzratenvariabilität, 1. Aufl. Wien: Verl.-Haus der Ärzte, 2010. 
 
[18] J. Pan and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,” IEEE 

Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp. 230–236, Mar. 1985. 
 
[19] “Heart Rate Variability and other RECOVERY markers.” [Online]. Available: 

https://everfit.co.nz/articles/heart-rate-variability. [Accessed: 03-Mar-2019]. 
 
[20] J. B. Furness, “Autonomic Nervous System,” in Encyclopedia of Neuroscience, L. R. 

Squire, Ed. Oxford: Academic Press, 2009, pp. 833–835. 
 
[21] “Physiology of the Cardiac Autonomic System | Request PDF,” ResearchGate. 

[Online].Available:https://www.researchgate.net/publication/299825347_Physiology_o
f_the_Cardiac_Autonomic_System. [Accessed: 27-Feb-2019]. 

 
[22] J. B. Furness, “Parasympathetic Nervous System,” in Encyclopedia of Neuroscience, 

L. R. Squire, Ed. Oxford: Academic Press, 2009, pp. 445–446. 
 
[23] A. Bohren, “Sympathetic Nervous System: A guide to understanding how it works,” 

CogniFit’s Blog, 04-Apr-2018. [Online]. Available: 
https://blog.cognifit.com/sympathetic-nervous-system/. [Accessed: 07-Mar-2019]. 

 
[24] D. Britt, “Dysautonomia: Explaining Autonomic Dysfunction | PatientHelp.” . 
 
[25] S. Sammito and I. Böckelmann, “Analyse der Herzfrequenzvariabilität: Mathematische 

Basis und praktische Anwendung,” Herz, vol. 40, no. S1, pp. 76–84, Mar. 2015. 
 
[26] “Electrocardiography: Overview, ECG Indications and Contraindications, Preparation,” 

Jun. 2018. 
 
[27] C. E. Shannon, “Communication in the Presence of Noise,” Proceedings of the IRE, 

vol. 37, no. 1, pp. 10–21, Jan. 1949. 
 
[28] “Fielding DSP.” [Online]. Available: https://www.fieldingdsp.com/alias. [Accessed: 13-

Mar-2019]. 
 
[29] M. Malik, “Heart rate variability: Standards of measurement, physiological 

interpretation, and clinical use,” Circulation, vol. 93, pp. 1043–1065, Mar. 1996. 
 
[30] I. Kersschot, “Unipolar versus bipolar leads,” in Cardiac Pacing and Electrophysiology: 

A bridge to the 21st century, A. E. Aubert, H. Ector, and R. Stroobandt, Eds. Dordrecht: 
Springer Netherlands, 1994, pp. 203–207. 



 

52 

[31] A. E. Aubert, B. Seps, and F. Beckers, “Heart rate variability in athletes,” Sports Med, 
vol. 33, no. 12, pp. 889–919, 2003. 

 
[32] C. L. Márquez MF, “Common electrocardiographic artifacts mimicking arrhythmias in 

ambulatory monitoring,” Am. Heart J., vol. 144, no. 2, pp. 187–97, 2002. 
 
[33] Dustin T. Weiler Et al., “wearable heart rate monitor technology accuracy in research: 

a comparative study between PPG and ECG technology,” Human Factors and 
Ergonomics Society, 2017. 

 
[34] G. Lu, F. Yang, J. A. Taylor, and J. F. Stein, “A comparison of photoplethysmography 

and ECG recording to analyse heart rate variability in healthy subjects,” J Med Eng 
Technol, vol. 33, no. 8, pp. 634–641, 2009. 

 
[35] “Measuring the Heart - How Does ECG and PPG Work?,” iMotions, 21-Mar-2017. 

[Online]. Available: https://imotions.com/blog/measuring-the-heart-how-does-ecg-and-
ppg-work/. [Accessed: 13-Mar-2019]. 

 
[36] “JMU - Clinical Validation of Heart Rate Apps: Mixed-Methods Evaluation Study | 

Vandenberk | JMIR mHealth and uHealth.” [Online]. Available: 
https://mhealth.jmir.org/2017/8/e129/. [Accessed: 18-Mar-2019]. 

 
[37] F. Shaffer and J. P. Ginsberg, “An Overview of Heart Rate Variability Metrics and 

Norms,” Front Public Health, vol. 5, Sep. 2017. 
 
[38] C. A. García Martínez et al., Heart Rate Variability Analysis with the R package RHRV. 

Cham: Springer International Publishing, 2017. 
 
[39] “RMSSD – der HRV-Wert für die Erholungsfähigkeit | Herzratenvariabiliät (HRV),” 

Herzratenvariabilität (HRV), 23-Sep-2017. 
 
[40] “A novel device based on smart textile to control heart’s activity during exercise. - 

PubMed - NCBI.” [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/24756693. 
[Accessed: 01-Apr-2019]. 

 
[41] K. Trimmel, J. Sacha, and H. V. Huikuri, Eds., Heart Rate Variability: Clinical 

Applications and Interaction between HRV and Heart Rate. Frontiers Media SA, 2015. 
 
[42] A. Stys and T. Stys, “Current clinical applications of heart rate variability,” Clin Cardiol, 

vol. 21, no. 10, pp. 719–724, Oct. 1998. 
 
[43] H. ChuDuc, K. NguyenPhan, and D. NguyenViet, “A Review of Heart Rate Variability 

and its Applications,” APCBEE Procedia, vol. 7, pp. 80–85, Jan. 2013. 
 
[44] “Heart Rate Variability (HRV) | Science for Sport.” [Online]. Available: 

https://www.scienceforsport.com/heart-rate-variability-hrv/. [Accessed: 01-Apr-2019]. 
 
[45] V. Jeyhani, S. Mahdiani, M. Peltokangas, and A. Vehkaoja, “Comparison of HRV 

parameters derived from photoplethysmography and electrocardiography signals,” 
Conf Proc IEEE Eng Med Biol Soc, vol. 2015, pp. 5952–5955, 2015. 

 



 

53 

[46] M. R. Esco, A. A. Flatt, and F. Y. Nakamura, “Agreement Between a Smartphone Pulse 
Sensor Application and Electrocardiography for Determining lnRMSSD,” J Strength 
Cond Res, vol. 31, no. 2, pp. 380–385, Feb. 2017. 

 
[47] D. Giles, N. Draper, and W. Neil, “Validity of the Polar V800 heart rate monitor to 

measure RR intervals at rest,” Eur J Appl Physiol, vol. 116, pp. 563–571, 2016. 
 
[48] Biopac Systems, Inc., “Biopac MP35 specification sheet.” 08-May-2017. 
 
[49] “Bluetooth Smart Vs ANT+ Devices | Gear Mashers.” [Online]. Available: 

https://gearmashers.com/bluetooth-smart-vs-ant-devices/. [Accessed: 02-Apr-2019]. 
 
[50] M. Mukaka, “A guide to appropriate use of Correlation coefficient in medical research,” 

Malawi Med J, vol. 24, no. 3, pp. 69–71, Sep. 2012. 
 
[51] "Correlation Coefficient: Simple Definition, Formula, Easy Calculation Steps,” Statistics 

How To. [Online]. Available: 
https://www.statisticshowto.datasciencecentral.com/probability-and-
statistics/correlation-coefficient-formula/. [Accessed: 04-Jun-2019]. 

 
[52] J.-G. DONG, “The role of heart rate variability in sports physiology,” Exp Ther Med, vol. 

11, no. 5, pp. 1531–1536, May 2016. 
 
[53] “Polar H10 | Sensoren-Set für Herzfrequenz-Messung,” Polar Österreich. [Online]. 

Available: https://www.polar.com/at-
de/produkte/accessoires/h10_herzfrequenz_sensor. [Accessed: 17-Jun-2019]. 

 
[54] “BlueLeza HRM Blue,” BlueFeza Shop. Available: 

https://shop.bluefeza.com/shop/blueleza-hrm-blue-bluetooth-smart-ant-pulsgurt/. 
[Accessed: 17-Jun-2019]. 

 
[55] "Firstbeat Firstbeat Bodyguard 2.” [Online]. Available: https://shop.firstbeat.com/all-

products/bodyguard.html#.XQdQTY_gpEY. [Accessed: 17-Jun-2019]. 
 
[56] “Suunto Smart Sensor,” Suunto. [Online]. Available: https://www.suunto.com/de-

at/Produkte/Herzfrequenzgurte/Suunto-Smart-Sensor/. [Accessed: 17-Jun-2019]. 
 
[57] “Help Center,” LifeTrak. [Online]. Available: https://lifetrakusa.com/. [Accessed: 17-Jun-

2019]. 
 
[58] “Movesense Sensor HR+,” Movesense. Available: 

https://www.movesense.com/product/movesense-sensor-hr/. [Accessed: 17-Jun-
2019]. 

 
[59] “Bluetooth Mobile Heart Rate HRV Monitor with Ear Clip and Fingertip Sensor - 

KYTO2935,” KYTO Fitness Technology. [Online]. Available: 
https://kytofitness.com/products/bluetooth-mobile-heart-rate-monitor-with-ear-clip-
kyto2935. [Accessed: 17-Jun-2019]. 

 



 

54 

List of Figures 
 

Figure 1: illustration of the inter-beat-intervals of four consecutive R-peaks of a human ECG-

signal. sec.=seconds; BPM=beats per minute [19]. ............................................................ 7 

 

Figure 2: The Illustration describes the effect of sympathetic (brown column) and 

parasympathetic (red column) activity on the different organs of the human body. The 

schematic display of the spinal cord shows the locations of the responsible nerves [24]. ... 9 

 

Figure 3: The blue vertical lines show the sampling rate of the system. The red circles mark 

the data points measured of the signal. The yellow curve in the upper illustration shows the 

signal detected with a sampling rate, which is high enough to avoid an aliasing effect. The 

blue curve in the lower illustration shows an aliasing effect due to a low sampling frequency. 

The signal detected (blue curve) does not match the real signal (yellow curve) [28]. .........11 

 

Figure 4: ECG-signal with movement artefacts (red circle) after four consecutive beats. 

Modified illustration from [32]. ...........................................................................................12 

 

Figure 5: The illustration shows a comparison of an ECG-derived signal (black line) and a 

PPG-derived signal (purple line) of five consecutive heart beats. The red dots mark the peak 

of the signal detected [36]. ................................................................................................14 

 

Figure 6: The first electrode (white cable) was placed on the sternum. The second electrode 

(red cable) about three centimetres below the left pectoralis major and the chest belt. The 

reference electrode (black cable) was placed on the right malleolus lateralis. ...................24 

 

Figure 7: ECG signal (blue frame) of eight consecutive heart beats with x-axis in seconds 

and y-axis in millivolt. Calculated RR beat intervals (green frame) of the ECG data with x-

axis and y-axis in seconds. ...............................................................................................25 

 

Figure 8: Zoom HRV smartwatch at Open Reading mode (blue LED is shining) connected to 

a smartphone, running the Elite HRV application. A preview of the current heart frequency 

and the variability can be seen on the screen during data recording. ................................26 

 

Figure 9: An example of the raw data of Biopac and Polar H10 (Subject 1 - Subject 4), 

collected in an Excel-file. This data matrix was used for the further analysis. ....................26 

 

Figure 10: Plot of the manually synchronised raw data sets (first 40 pairs) for the Biopac 

(orange line) and the Zoom HRV (blue line). .....................................................................28 



 

55 

Figure 11: Bland-Altman plot of the Polar H10 at rest. The red line in the Bland-Altman plot 

shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents 

one pair of data points. The parameter p_fail describes the percentage of failed inter-beat-

intervals. Both axes are described in milliseconds. Bias = -0.05 ms; LoA = 1.41 to -1.51 ms; 

p_fail = 0.17 % ..................................................................................................................30 

 

Figure 12: Bland-Altman plot of the Polar H10 at exercise. The red line in the Bland-Altman 

plot shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot 

represents one pair of data points. The parameter p_fail describes the percentage of failed 

inter-beat-intervals. Both axes are described in milliseconds. Bias = 0.06 ms; LoA = 4.12 to 

-4.2 ms; p_fail = 0.26 % ....................................................................................................31 

 

Figure 13: Bland-Altman plot of the HRM Blue at rest. The red line in the Bland-Altman plot 

shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents 

one pair of data points. The parameter p_fail describes the percentage of failed inter-beat-

intervals. Both axes are described in milliseconds. Bias = 0.29 ms; LoA = 5.94 to -5.36 ms; 

p_fail = 0.90 % ..................................................................................................................32 

 

Figure 14: Bland-Altman plot of the HRM Blue at exercise. The red line in the Bland-Altman 

plot shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot 

represents one pair of data points. The parameter p_fail describes the percentage of failed 

inter-beat-intervals. Both axes are described in milliseconds. Bias = 0.32 ms; LoA = 5.37 to 

-4.73 ms; p_fail = 0.36 % ..................................................................................................33 

 

Figure 15: Bland-Altman plot of the Firstbeat Bodyguard at rest. The red line in the Bland-

Altman plot shows the Bias. The two grey lines show the LoA of all datapoints. Every blue 

dot represents one pair of data points. The parameter p_fail describes the percentage of 

failed inter-beat-intervals. Both axes are described in milliseconds. Bias = -0.04 ms; LoA = 

3.79 to -3.86 ms; p_fail = 0.16 % .......................................................................................34 

 

Figure 16: Bland-Altman plot of the Firstbeat at exercise. The red line in the Bland-Altman 

plot shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot 

represents one pair of data points. The parameter p_fail describes the percentage of failed 

inter-beat-intervals. Both axes are described in milliseconds. Bias = -0.02 ms; LoA = 2.83 to 

-2.87 ms; p_fail = 0.05 % ..................................................................................................35 

 

Figure 17: Bland-Altman plot of the Suunto at rest. The red line in the Bland-Altman plot 

shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents 

one pair of data points. The parameter p_fail describes the percentage of failed inter-beat-

intervals. Both axes are described in milliseconds. Bias = 0.46 ms; LoA = 2.14 to -1.21 ms; 

p_fail = 0 % .......................................................................................................................36 



 

56 

Figure 18: Bland-Altman plot of the Suunto at exercise. The red line in the Bland-Altman plot 

shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents 

one pair of data points. The parameter p_fail describes the percentage of failed inter-beat-

intervals. Both axes are described in milliseconds. Bias = 0.39 ms; LoA = 4.48 to -3.71 ms; 

p_fail = 0 % .......................................................................................................................37 

 

Figure 19: Bland-Altman plot of the Zoom HRV at rest. The red line in the Bland-Altman plot 

shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents 

one pair of data points. The parameter p_fail describes the percentage of failed inter-beat-

intervals. Both axes are described in milliseconds. Bias = 0.57 ms; LoA = 74.48 to -73.34 

ms; p_fail = 9.57 % ...........................................................................................................38 

 

Figure 20: Bland-Altman plot of the Movesense HR at rest. The red line in the Bland-Altman 

plot shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot 

represents one pair of data points. The parameter p_fail describes the percentage of failed 

inter-beat-intervals. Both axes are described in milliseconds. Bias = 0.52 ms; LoA = 2.35 to 

-1.31 ms; p_fail = 0.05 % ..................................................................................................39 

 

Figure 21: Bland-Altman plot of the Movesense HR at exercise. The red line in the Bland-

Altman plot shows the Bias. The two grey lines show the LoA of all datapoints. Every blue 

dot represents one pair of data points. The parameter p_fail describes the percentage of 

failed inter-beat-intervals. Both axes are described in milliseconds. Bias = 0.47 ms; LoA = 

3.14 to -2.19 ms; p_fail = 0.04 % .......................................................................................40 

 

Figure 22: Bland-Altman plot of the HRM 2935 at rest. The red line in the Bland-Altman plot 

shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents 

one pair of data points. The parameter p_fail describes the percentage of failed inter-beat-

intervals. Both axes are described in milliseconds. Bias = -4.06 ms; LoA = 62.55 to -70.67 

ms; p_fail = 4.70 % ...........................................................................................................41 

 

Figure 23: Bland-Altman plot of the HRM Blue at rest. The red line in the Bland-Altman plot 

shows the Bias. The two grey lines show the LoA of all datapoints. Every blue dot represents 

one pair of data points. The parameter p_fail describes the percentage of failed inter-beat-

intervals. Both axes are described in milliseconds. Bias = -0.67 ms; LoA = 44.15 to -45.49 

ms; p_fail = 1.64 % ...........................................................................................................42 

 

Figure 24: Scatterplot of the Polar H10 sensor and the clinical standard at rest. R is the 

Pearson’s Correlation Coefficient. The x-axis represents the RR-values of the Biopac MP35 

in milliseconds. The y-axis represents the RR-values of the Polar H10 in milliseconds. Every 

blue dot represents one pair of data points. The red line is the fit of all data points. ..........45 



 

57 

Figure 25: Scatterplot of the HRM-2935 at and the clinical standard at exercise. R is the 

Pearson’s Correlation Coefficient. The x-axis represents the RR-values of the Biopac MP35 

in milliseconds. The y-axis represents the RR-values of the HRM-2935 in milliseconds. Every 

blue dot represents one pair of data points. The red line is the fit of all data points. ..........45 

 

Figure 26: Images of the used biosensors at Subject Testing 1+2; 1=Polar H10 [53]; 2=HRM 

Blue [54]; 3=Firstbeat Bodyguard [55]; 4=Suunto Smart Sensor [56]; 5=Zoom HRV [57]; 

6=Movesense HR [58]; 7=HRM-2935 [59]………………..……………………………………63 

 



 

58 

List of Tables 
 

Table 1: Anthropometric data of participants at the Testing 1 ............................................21 

 

Table 2: Anthropometric data of participants at the Testing 2 ............................................21 

 

Table 3: List of sensors designed for an HRV measurement; all the information was gathered 

in an online research at the manufacturer’s official web pages; unknown = if there is no 

explicit statement according the sampling frequency,  PPG = Photoplethysmography, ECG 

= Electrocardiography; * = the device is currently not available or the sale price is unknown;  

the sale price was found in the manufacturer’s official webshop in April 2019 ...................22 

 

Table 4: wearables used for the Subject Testing 1; ECG = Electrocardiography ...............23 

 

Table 5: wearables used for the Subject Testing 2; ECG = Electrocardiography;                             

PPG  = Photoplethysmography .........................................................................................24 

 

Table 6: Calculated Pearson’s Correlation Coefficient for all wearables used for the subject 

tests (at rest and at exercise). The Zoom HRV smartwatch provides raw data only during 

rest. A Coefficient of nearly 1 means that the two sensors show a strong linear relation and 

a Coefficient of nearly 0 means that the two sensors show a weak linear relation. ............29 

 

Table 7: Calculated HRV parameters and the relative errors of the Polar H10 at rest. ......30 

 

Table 8: Calculated HRV parameters and the relative errors of the Polar H10 at exercise.

..........................................................................................................................................31 

 

Table 9: Calculated HRV parameters and the relative errors of the HRM Blue at rest. ......32 

 

Table 10: Calculated HRV parameters and the relative errors of the HRM Blue at exercise.

..........................................................................................................................................33 

 

Table 11: Calculated HRV parameters and the relative errors of the Firstbeat Bodyguard at 

rest. ...................................................................................................................................34 

 

Table 12: Calculated HRV parameters and the relative errors of the Firstbeat at exercise.

..........................................................................................................................................35 

 

Table 13: Calculated HRV parameters and the relative errors of the Suunto at rest. .........36 

 



 

59 

Table 14: Calc. HRV parameters and the relative errors of the Suunto at exercise. ..........37 

 

Table 15: Calc. HRV parameters and the relative errors of the Zoom HRV at rest. ...........38 

 

Table 16: Calculated HRV parameters and the relative errors of the Movesense HR at rest.

..........................................................................................................................................39 

 

Table 17: Calculated HRV parameters and the relative errors of the Movesense HR at 

exercise. ...........................................................................................................................40 

 

Table 18: Calc. HRV parametesr and the relative errors of the HRM 2935 at rest. ............41 

 

Table 19: Calculated HRV parameters and the relative errors of the HRM 2935 at exercise.

..........................................................................................................................................42 

 

Table 20: Mean Absolute Errors of all wearables at rest and exercise. Due to the missing 

data set of the Zoom HRV at exercise, the smartwatch was not considered in this calculation. 

The standard deviations of the results are listed beside in brackets. .................................43 

 

Table 21: Mean Absolute Errors of ECG-based (n=5) wearables at rest and exercise. The 

standard deviations of the results are listed beside in brackets. ........................................47 

 



 

60 

List of Abbreviations 
 

HRV Heart Rate Variability 

UAS University of Applied Science 

ANS Autonomic Nervous System 

PPG Photoplethysmography 

ECG Electrocardiography 

SA Sinoatrial 

AV Atrioventricular 

SNS Sympathetic Nervous System 

PNS Parasympathetic Nervous System 

RSA Respiratory Sinus Arrhythmia 

LED Light Emitting Diode 

CTG Cardiotocography 

REM Rapid Eye Movement 

ES Effect Size 

SDNN Standard Deviation of all RR Intervals 

RMSSD Root Mean-Square of Successive Differences of adjacent RR intervals 

pNN50 Percentage of adjacent RR intervals differing by more than 50 ms 

TEE Technical Error Estimate 

ICC Inter-Class-Correlation 

LoA Limits of Agreement 

SD Standard Deviation 

HR Heart Rate 

ms Milliseconds 

  

  

  

  

  

  

  

  

  

 



 

61 

A: Declaration of consent 
 

Die Richtlinien der der Fachhochschule Technikum Wien sehen vor, dass sich die Teilnehmer/innen an empiri-

schen Studien explizit und nachvollziehbar einverstanden erklären, dass sie freiwillig an der Forschung teilneh-

men. Aus diesem Grund möchte ich Sie bitten, der vorliegenden Einverständniserklärung zuzustimmen. Zu Ihrer 

Information sind nachfolgend einige Hinweise aufgeführt.  

 

(1) Allgemeines  

Die Studie wird am Fachgebiet Gesundheits- und Rehabilitationstechnik der Fachhochschule Technikum Wien 

mit dem Titel „Ermittlung der Datenqualität und der Usability von in Wearables verbauten Biosensoren, zur 

Anwendung in der Gesundheitstechnik“ durchgeführt und verfolgt rein wissenschaftliche Zwecke. Daraus 

ergibt sich, dass durch diese Studie gewonnene Messdaten auch im Zuge von wissenschaftlichen Arbeiten in 

pseudonymisierter bzw. verschlüsselter Form an die Öffentlichkeit gelangen. 
 

(2) Teilnahme 

Sie befinden Sich körperlich und geistig in einem gesunden Zustand, sodass Sie an der Studie teilnehmen kön-

nen. Die Teilnahme ist völlig freiwillig, woraus sich folgende Punkte daraus ergeben: 

I. Für Verletzungen und/oder körperliche Schäden, die im Zuge dieser Studie entstehen können, über-

nimmt der Verantwortliche dieser Studie keine Haftung. 

II. Es steht Ihnen zu jedem Zeitpunkt dieser Studie frei, Ihre Teilnahme abzubrechen, ohne dass Ihnen 

dadurch Nachteile entstehen. 

III. Es besteht kein Recht auf materielle und/oder immaterielle Entschädigung. 
 

(3) Datenschutz 

I. Nutzung der Daten: 

Ich erkläre mich einverstanden, dass die nachfolgend persönliche Daten erhoben und zu Forschungs-

zwecken verwendet werden dürfen.  

II. Einwilligung der Speicherung und Verarbeitung:  

Ihre im Rahmen der Studie angegebenen personenbezogenen Daten werden pseudonymisiert gespei-

chert. Das bedeutet, dass Namen, Geburtsdatum etc. von Ihren Antworten entfernt werden und ein 

Code verwendet wird, so dass Ihre Angaben in der Studie nicht mit Ihnen persönlich in Verbindung 

gebracht werden können. Die pseudonymisierten Daten sind nur dem an der Studie beteiligtem Ver-

antwortlichen zugänglich und werden zu keinem Zeitpunkt an Dritte weitergegeben. 
 

(4) Offene Fragen 

Alle Fragen, die Sie an den Verantwortlichen der Studie im Bezug zu dieser gestellt haben, wurden Ihnen ver-

ständlich und genügend beantwortet. 

 

 

Ich, ………………………………………………………………………………………………………………. 

, habe alle oben genannten Punkte gelesen, verstanden und bin mit der Teilnahme an der Studie einverstanden. 

 

Unterschrift Teilnehmer:        Unterschrift Verantwortlicher:   
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(5) Optionale Einverständnisse 

 

Zutreffendes bitte Ankreuzen: 

Der Verantwortliche der Studie darf im Zuge der Studie Fotos machen und diese auch in pseudonymisierter 

bzw. verschlüsselter Form in der wissenschaftlichen Arbeit als Bildmaterial verwenden.   

  

 JA   NEIN 

 

 

(6) Persönliche Daten 

 

• Geschlecht: ________________________________________ 

 

• Geburtsdatum: ______________________________________ 

 

• Größe [cm]: ________________________________________ 

 

• Gewicht [kg]: _______________________________________ 

 

• Ø sportliche Aktivität [Stunden/Woche]: __________________ 

 

• Bevorzugte Sportart: __________________________________ 

 

 

 

 

 

 

Ich bestätige hiermit, dass die oben angegebenen persönlichen Daten richtig sind. 

 

Unterschrift: __________________________________________________ 
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B: Kubios HRV Standard - User interface 
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C: Images of the used biosensors 
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Figure 26: Images of the used biosensors at Subject Testing 1+2; 1=Polar H10 [53]; 2=HRM 

Blue [54]; 3=Firstbeat Bodyguard [55]; 4=Suunto Smart Sensor [56]; 5=Zoom HRV [57]; 

6=Movesense HR [58]; 7=HRM-2935 [59] 

 


